

Table of contents
Preface 5

Prerequisites . 5
Conventions . 5
Acknowledgements . 6
Feedback and Errata . 6
Author info . 6
License . 6
Book version . 7

Introduction 8
Installation . 8
Documentation and options overview . 8
Editing standard input . 10
Editing file input . 11
Cheatsheet and summary . 11
Exercises . 12

In-place file editing 13
With backup . 13
Without backup . 13
Multiple files . 14
Prefix backup name . 14
Place backups in different directory . 15
Cheatsheet and summary . 15
Exercises . 15

Selective editing 17
Conditional execution . 17
Delete command . 17
Print command . 18
Quit commands . 19
Multiple commands . 20
Line addressing . 21
Print only line number . 22
Address range . 23
Relative addressing . 24
n and N commands . 25
Cheatsheet and summary . 27
Exercises . 28

BRE/ERE Regular Expressions 31
Line Anchors . 31
Word Anchors . 32
Alternation . 33
Grouping . 34
Matching the metacharacters . 35
Using different delimiters . 35
The dot meta character . 36
Quantifiers . 36

2

Longest match wins . 38
Character classes . 39
Escape sequences . 43
Backreferences . 44
Cheatsheet and summary . 45
Exercises . 47

Flags 49
Case insensitive matching . 49
Changing case in replacement section . 49
Global replace . 50
Replace specific occurrences . 51
Print flag . 52
Write to a file . 52
Executing external commands . 53
Multiline mode . 55
Cheatsheet and summary . 56
Exercises . 56

Shell substitutions 59
Variable substitution . 59
Escaping metacharacters . 60
Command substitution . 61
Cheatsheet and summary . 62
Exercises . 62

z, s and f command line options 64
NUL separated lines . 64
Separate files . 65
File as source of sed commands . 65
Cheatsheet and summary . 67
Exercises . 67

append, change, insert 69
Basic usage . 69
Escape sequences . 70
Multiple commands . 71
Shell substitution . 72
Cheatsheet and summary . 72
Exercises . 73

Adding content from file 74
r for entire file . 74
Using e and cat command . 76
R for line by line . 76
Cheatsheet and summary . 77
Exercises . 77

Control structures 78
Branch commands . 78
if-then-else . 78

3

loop . 79
Cheatsheet and summary . 81
Exercises . 81

Processing lines bounded by distinct markers 83
Uniform markers . 83
Extracting first or last group . 85
Broken groups . 86
Summary . 86
Exercises . 87

Gotchas and Tricks 88

Further Reading 96

4

Preface

You are likely to be familiar with the ”Find and Replace” dialog box from a text editor, word
processor, IDE, etc to search for something and replace it with something else. sed is a
command line tool that is similar, but much more versatile and feature-rich. Some of the GUI
applications may also support regular expressions, a feature which helps to precisely define
a matching criteria. You could consider regular expressions as a mini-programming language
in itself, designed to solve various text processing needs.

The book heavily leans on examples to present options and features of sed one by one.
Regular expressions will also be discussed in detail. However, commands to manipulate data
buffers andmultiline techniques will be discussed only briefly and some commands are skipped
entirely.

It is recommended that you manually type each example and experiment with them. Under-
standing both the nature of sample input string and the output produced is essential. As an
analogy, consider learning to drive a bike or a car — no matter how much you read about them
or listen to explanations, you need to practice a lot and infer your own conclusions. Should
you feel that copy-paste is ideal for you, code snippets are available chapter wise on GitHub.

Prerequisites

Prior experience working with command line and bash shell, should know concepts like
file redirection, command pipeline and so on. Knowing basics of grep will also help in
understanding filtering features of sed .

If you are new to the world of command line, check out ryanstutorials or my GitHub repository
on Linux Command Line before starting this book.

My Command Line Text Processing repository includes a chapter on GNU sed which has been
edited and expanded to create this book.

Conventions

• The examples presented here have been tested on GNU bash shell with GNU sed 4.7
and may include features not available in earlier versions

• Code snippets shown are copy pasted from bash shell and modified for presentation
purposes. Some commands are preceded by comments to provide context and explana-
tions. Blank lines to improve readability, only real time shown for speed comparisons,
output skipped for commands like wget and so on

• Unless otherwise noted, all examples and explanations are meant for ASCII characters
only

• sed would mean GNU sed , grep would mean GNU grep and so on unless otherwise
specified

• External links are provided for further reading throughout the book. Not necessary to
immediately visit them. They have been chosen with care and would help, especially
during rereads

• The learn_gnused repo has all the files used in examples and exercises and other details
related to the book. Click the Clone or download button to get the files

5

https://github.com/learnbyexample/learn_gnused/tree/master/code_snippets
https://ryanstutorials.net/linuxtutorial/
https://github.com/learnbyexample/Linux_command_line
https://github.com/learnbyexample/Command-line-text-processing
https://github.com/learnbyexample/learn_gnused

Acknowledgements

• GNU sed documentation — manual and examples
• stackoverflow and unix.stackexchange — for getting answers to pertinent questions on

bash , sed and other commands
• tex.stackexchange — for help on pandoc and tex related questions
• Cover image

∘ draw.io
∘ tree icon by Gopi Doraisamy under Creative Commons Attribution 3.0 Unported
∘ wand icon by roundicons.com

• softwareengineering.stackexchange and skolakoda for programming quotes
• Warning and Info icons by Amada44 under public domain

Special thanks to all my friends and online acquaintances for their help, support and encour-
agement, especially during difficult times.

Feedback and Errata

I would highly appreciate if you’d let me know how you felt about this book, it would help to
improve this book as well as my future attempts. Also, please do let me know if you spot any
error or typo.

Issue Manager: https://github.com/learnbyexample/learn_gnused/issues

E-mail: learnbyexample.net@gmail.com

Twitter: https://twitter.com/learn_byexample

Author info

Sundeep Agarwal is a freelance trainer, author and mentor. His previous experience includes
working as a Design Engineer at Analog Devices for more than 5 years. You can find his other
works, primarily focused on Linux command line, text processing, scripting languages and
curated lists, at https://github.com/learnbyexample. He has also been a technical reviewer for
Command Line Fundamentals book and video course published by Packt.

List of books: https://learnbyexample.github.io/books/

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Code snippets are available under MIT License

Resources mentioned in Acknowledgements section above are available under original
licenses.

6

https://www.gnu.org/software/sed/manual/sed.html
https://stackoverflow.com/
https://unix.stackexchange.com/
https://tex.stackexchange.com/
https://about.draw.io/
https://www.iconfinder.com/icons/3199231/ellipse_green_nature_tree_icon
https://www.iconfinder.com/gopidoraisamy
https://creativecommons.org/licenses/by/3.0/
https://www.iconfinder.com/icons/1679640/design_magic_magician_tool_wand_icon
https://www.iconfinder.com/roundicons
https://softwareengineering.stackexchange.com/questions/39/whats-your-favourite-quote-about-programming
https://skolakoda.org/programming-quotes
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://github.com/learnbyexample/learn_gnused/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://www.packtpub.com/application-development/command-line-fundamentals
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/learn_gnused/blob/master/LICENSE

Book version

1.1

See Version_changes.md to track changes across book versions.

7

https://github.com/learnbyexample/learn_gnused/blob/master/Version_changes.md

Introduction

The command name sed is derived from stream editor. Here, stream refers to data being
passed via shell pipes. Thus, the command’s primary functionality is to act as a text editor for
stdin data with stdout as output target. Over the years, functionality was added to edit file
input and save the changes back to the same file.

This chapter will cover how to install/upgrade sed followed by details related to documen-
tation. Then, you’ll get an introduction to substitute command, which is the most commonly
used sed feature. The chapters to follow will add more details to the substitute command,
discuss other commands and command line options. Cheatsheet, summary and exercises are
also included at the end of these chapters.

Installation

If you are on a Unix like system, you are most likely to already have some version of sed
installed. This book is primarily for GNU sed . As there are syntax and feature differences
between various implementations, please make sure to follow along with what is presented
here. GNU sed is part of text creation and manipulation commands provided by GNU and
comes by default on GNU/Linux. To install newer or particular version, visit gnu: software.
Check release notes for an overview of changes between versions. See also bug list.

$ # use a dir, say ~/Downloads/sed_install before following the steps below
$ wget https://ftp.gnu.org/gnu/sed/sed-4.7.tar.xz
$ tar -Jxf sed-4.7.tar.xz
$ cd sed-4.7/
$./configure
$ make
$ sudo make install

$ type -a sed
sed is /usr/local/bin/sed
sed is /bin/sed
$ sed --version | head -n1
sed (GNU sed) 4.7

If you are not using a Linux distribution, you may be able to access GNU sed using below
options:

• git-bash
• WSL
• brew

Documentation and options overview

It is always a good idea to know where to find the documentation. From command line, you
can use man sed for a short manual and info sed for full documentation. For a better
interface, visit online gnu sed manual.

8

https://www.gnu.org/manual/manual.html
https://www.gnu.org/software/sed/
https://savannah.gnu.org/news/?group=sed
https://debbugs.gnu.org/cgi/pkgreport.cgi?package=sed
https://gitforwindows.org/
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://brew.sh/
https://www.gnu.org/software/sed/manual/sed.html

$ man sed
SED(1) User Commands SED(1)

NAME
sed - stream editor for filtering and transforming text

SYNOPSIS
sed [OPTION]... {script-only-if-no-other-script} [input-file]...

DESCRIPTION
Sed is a stream editor. A stream editor is used to perform basic
text transformations on an input stream (a file or input from a pipe‐
line). While in some ways similar to an editor which permits
scripted edits (such as ed), sed works by making only one pass over
the input(s), and is consequently more efficient. But it is sed's
ability to filter text in a pipeline which particularly distinguishes
it from other types of editors.

For a quick overview of all the available options, use sed --help from the command line.
Most of them will be explained in the coming chapters.

$ # only partial output shown here
$ sed --help

-n, --quiet, --silent
suppress automatic printing of pattern space

--debug
annotate program execution

-e script, --expression=script
add the script to the commands to be executed

-f script-file, --file=script-file
add the contents of script-file to the commands to be executed

--follow-symlinks
follow symlinks when processing in place

-i[SUFFIX], --in-place[=SUFFIX]
edit files in place (makes backup if SUFFIX supplied)

-l N, --line-length=N
specify the desired line-wrap length for the 'l' command

--posix
disable all GNU extensions.

-E, -r, --regexp-extended
use extended regular expressions in the script
(for portability use POSIX -E).

-s, --separate
consider files as separate rather than as a single,
continuous long stream.

--sandbox
operate in sandbox mode (disable e/r/w commands).

-u, --unbuffered
load minimal amounts of data from the input files and flush

9

the output buffers more often
-z, --null-data

separate lines by NUL characters
--help display this help and exit
--version output version information and exit

If no -e, --expression, -f, or --file option is given, then the first
non-option argument is taken as the sed script to interpret. All
remaining arguments are names of input files; if no input files are
specified, then the standard input is read.

Editing standard input

sed has various commands to manipulate text input. substitute command is most commonly
used, which will be briefly discussed in this chapter. It is used to replace matching text with
something else. The syntax is s/REGEXP/REPLACEMENT/FLAGS where

• s stands for substitute command
• / is an idiomatic delimiter character to separate various portions of the command
• REGEXP stands for regular expression
• REPLACEMENT specifies the replacement string
• FLAGS are options to change default behavior of the command

For now, it is enough to know that s command is used for search and replace operation.

$ # sample command output for stream editing
$ printf '1,2,3,4\na,b,c,d\n'
1,2,3,4
a,b,c,d

$ # for each input line, change only first ',' to '-'
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/'
1-2,3,4
a-b,c,d

$ # change all matches by adding 'g' flag
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/g'
1-2-3-4
a-b-c-d

Here sample input is created using printf command to showcase stream editing. By default,
sed processes input line by line. To determine a line, sed uses the newline character \n
. The first sed command replaces only the first occurrence of , with - . The second
command replaces all occurrences as g flag is also used (g stands for global).

If you have a file with a different line ending style, you’ll need to preprocess it
first. For example, a text file downloaded from internet or a file originating from
Windows OS would typically have lines ending with \r\n (carriage return + line
feed). Modern text editors, IDEs and word processors can handle both styles easily.

10

But every character matters when it comes to command line text processing. See
stackoverflow: Why does my tool output overwrite itself and how do I fix it? for a
detailed discussion and mitigation methods.

As a good practice, always use single quotes around the script to prevent shell
interpretation. Other variations will be discussed later.

Editing file input

Although sed derives its name from stream editing, it is common to use sed for file editing.
To do so, append one or more input filenames to the command. You can also specify stdin
as a source by using - as filename. By default, output will go to stdout and the input
files will not be modified. In-place file editing chapter will discuss how to apply the changes
to source file.

Sample input files used in examples are available from learn_gnused repo.

$ cat greeting.txt
Hi there
Have a nice day

$ # for each line, change first occurrence of 'day' with 'weekend'
$ sed 's/day/weekend/' greeting.txt
Hi there
Have a nice weekend

$ # change all 'e' to 'E' and save changed text to another file
$ sed 's/e/E/g' greeting.txt > out.txt
$ cat out.txt
Hi thErE
HavE a nicE day

In the previous section examples, all input lines had matched the search expression. The first
sed command here searched for day , which did not match the first line of greeting.txt
file input. By default, even if a line didn’t satisfy the search expression, it will be part of the
output. You’ll see how to get only the modified lines in Print command section.

Cheatsheet and summary

Note Description

man sed brief manual
sed --help brief description of all the command line options
info sed comprehensive manual
online gnu sed manual well formatted, easier to read and navigate
s/REGEXP/REPLACEMENT/FLAGS syntax for substitute command
sed 's/,/-/' replace first , with -
sed 's/,/-/g' replace all , with -

11

https://stackoverflow.com/questions/45772525/why-does-my-tool-output-overwrite-itself-and-how-do-i-fix-it
https://github.com/learnbyexample/learn_gnused/tree/master/example_files
https://www.gnu.org/software/sed/manual/sed.html

This introductory chapter covered installation process, documentation and how to search and
replace basic text using sed from the command line. In coming chapters, you’ll learn many
more commands and features that make sed an important tool when it comes to command
line text processing. One such feature is editing files in-place, which will be discussed in the
next chapter.

Exercises

Exercise related files are available from exercises folder of learn_gnused repo.

a) Replace 5 with five for the given stdin source.

$ echo 'They ate 5 apples' | sed ##### add your solution here
They ate five apples

b) Replace all occurrences of 0xA0 with 0x50 and 0xFF with 0x7F for the given input
file.

$ cat hex.txt
start address: 0xA0, func1 address: 0xA0
end address: 0xFF, func2 address: 0xB0

$ sed ##### add your solution here
start address: 0x50, func1 address: 0x50
end address: 0x7F, func2 address: 0xB0

c) The substitute command searches and replaces sequences of characters. When you need
to map one or more characters with another set of corresponding characters, you can use the
y command. Quoting from the manual:

y/src/dst/

Transliterate any characters in the pattern space which match any of the source-
chars with the corresponding character in dest-chars.

Use the y command to transform the given input string to get the output string as shown
below.

$ echo 'goal new user sit eat dinner' | sed ##### add your solution here
gOAl nEw UsEr sIt EAt dInnEr

12

https://github.com/learnbyexample/learn_gnused/tree/master/exercises

In-place file editing

In the examples presented in previous chapter, the output from sed was displayed on the
terminal or redirected to another file. This chapter will discuss how to write back the changes
to the input file(s) itself using the -i command line option. This option can be configured to
make changes to the input file(s) with or without creating a backup of original contents. When
backups are needed, the original filename can get a prefix or a suffix or both. And the backups
can be placed in the same directory or some other directory as needed.

With backup

When an extension is provided as an argument to -i option, the original contents of the
input file gets preserved as per the extension given. For example, if the input file is ip.txt
and -i.orig is used, the backup file will be named as ip.txt.orig

$ cat colors.txt
deep blue
light orange
blue delight

$ # no output on terminal as -i option is used
$ # space is NOT allowed between -i and extension
$ sed -i.bkp 's/blue/green/' colors.txt
$ # output from sed is written back to 'colors.txt'
$ cat colors.txt
deep green
light orange
green delight

$ # original file is preserved in 'colors.txt.bkp'
$ cat colors.txt.bkp
deep blue
light orange
blue delight

Without backup

Sometimes backups are not desirable. Using -i option on its own will prevent creating back-
ups. Be careful though, as changes made cannot be undone. In such cases, test the command
with sample input before using -i option on actual file. You could also use the option with
backup, compare the differences with a diff program and then delete the backup.

$ cat fruits.txt
banana
papaya
mango

$ sed -i 's/an/AN/g' fruits.txt

13

$ cat fruits.txt
bANANa
papaya
mANgo

Multiple files

Multiple input files are treated individually and the changes are written back to respective
files.

$ cat f1.txt
have a nice day
bad morning
what a pleasant evening
$ cat f2.txt
worse than ever
too bad

$ sed -i.bkp 's/bad/good/' f1.txt f2.txt
$ ls f?.*
f1.txt f1.txt.bkp f2.txt f2.txt.bkp

$ cat f1.txt
have a nice day
good morning
what a pleasant evening
$ cat f2.txt
worse than ever
too good

Prefix backup name

A * character in the argument to -i option is special. It will get replaced with input
filename. This is helpful if you need to use a prefix instead of suffix for the backup filename.
Or any other combination that may be needed.

$ ls *colors*
colors.txt colors.txt.bkp

$ # single quotes is used here as * is a special shell character
$ sed -i'bkp.*' 's/green/yellow/' colors.txt
$ ls *colors*
bkp.colors.txt colors.txt colors.txt.bkp

14

Place backups in different directory

The * trick can also be used to place the backups in another directory instead of the parent
directory of input files. The backup directory should already exist for this to work.

$ mkdir backups
$ sed -i'backups/*' 's/good/nice/' f1.txt f2.txt
$ ls backups/
f1.txt f2.txt

Cheatsheet and summary

Note Description

-i after processing, write back changes to input file itself
changes made cannot be undone, so use this option with caution

-i.bkp in addition to in-place editing, preserve original contents to a file
whose name is derived from input filename and .bkp as a suffix

-i'bkp.*' * here gets replaced with input filename
thus providing a way to add a prefix instead of a suffix

-i'backups/*' this will place the back up copy in a different existing directory
instead of source directory

This chapter discussed about the -i option which is useful when you need to edit a file in-
place. This is particularly useful in automation scripts. But, do ensure that you have tested the
sed command before applying to actual files if you need to use this option without creating
backups. In the next chapter, you’ll learn filtering features of sed and how that helps to
apply commands to only certain input lines instead of all the lines.

Exercises

a) For the input file text.txt , replace all occurrences of in with an and write back the
changes to text.txt itself. The original contents should get saved to text.txt.orig

$ cat text.txt
can ran want plant
tin fin fit mine line
$ sed ##### add your solution here

$ cat text.txt
can ran want plant
tan fan fit mane lane
$ cat text.txt.orig
can ran want plant
tin fin fit mine line

b) For the input file text.txt , replace all occurrences of an with in and write back the
changes to text.txt itself. Do not create backups for this exercise. Note that you should

15

have solved the previous exercise before starting this one.

$ cat text.txt
can ran want plant
tan fan fit mane lane
$ sed ##### add your solution here

$ cat text.txt
cin rin wint plint
tin fin fit mine line
$ diff text.txt text.txt.orig
1c1
< cin rin wint plint

> can ran want plant

c) For the input file copyright.txt , replace copyright: 2018 with copyright: 2019 and
write back the changes to copyright.txt itself. The original contents should get saved to
2018_copyright.txt.bkp

$ cat copyright.txt
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2018
$ sed ##### add your solution here

$ cat copyright.txt
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2019
$ cat 2018_copyright.txt.bkp
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2018

d) In the code sample shown below, two files are created by redirecting output of echo
command. Then a sed command is used to edit b1.txt in-place as well as create a backup
named bkp.b1.txt . Will the sed command work as expected? If not, why?

$ echo '2 apples' > b1.txt
$ echo '5 bananas' > -ibkp.txt
$ sed -ibkp.* 's/2/two/' b1.txt

16

Selective editing

By default, sed acts on entire file. Many a times, you only want to act upon specific portions of
file. To that end, sed has features to filter lines, similar to tools like grep , head and tail .
sed can replicate most of grep ’s filtering features without too much fuss. And has features
like line number based filtering, selecting lines between two patterns, relative addressing, etc
which isn’t possible with grep . If you are familiar with functional programming, you would
have come across map, filter, reduce paradigm. A typical task with sed involves filtering
subset of input and then modifying (mapping) them. Sometimes, the subset is entire input file,
as seen in the examples of previous chapters.

A tool optimized for a particular functionality should be preferred where pos-
sible. grep , head and tail would be better performance wise compared to
sed for equivalent line filtering solutions.

For some of the examples, equivalent commands will be shown as comments for learning pur-
poses.

Conditional execution

As seen earlier, the syntax for substitute command is s/REGEXP/REPLACEMENT/FLAGS . The
/REGEXP/FLAGS portion can be used as a conditional expression to allow commands to execute
only for the lines matching the pattern.

$ # change commas to hyphens only if the input line contains '2'
$ # space between the filter and command is optional
$ printf '1,2,3,4\na,b,c,d\n' | sed '/2/ s/,/-/g'
1-2-3-4
a,b,c,d

Use /REGEXP/FLAGS! to act upon lines other than the matching ones.

$ # change commas to hyphens if the input line does NOT contain '2'
$ # space around ! is optional
$ printf '1,2,3,4\na,b,c,d\n' | sed '/2/! s/,/-/g'
1,2,3,4
a-b-c-d

/REGEXP/ is one of the ways to define a filter in sed , termed as address in the manual.
Others will be covered in sections to come in this chapter.

Delete command

To delete the filtered lines, use the d command. Recall that all input lines are printed by
default.

$ # same as: grep -v 'at'
$ printf 'sea\neat\ndrop\n' | sed '/at/d'
sea
drop

17

To get the default grep filtering, use !d combination. Sometimes, negative logic can get
confusing to use. It boils down to personal preference, similar to choosing between if and
unless conditionals in programming languages.

$ # same as: grep 'at'
$ printf 'sea\neat\ndrop\n' | sed '/at/!d'
eat

Using an address is optional. So, for example, sed '!d' file would be
equivalent to cat file command.

Print command

To print the filtered lines, use the p command. But, recall that all input lines are printed
by default. So, this command is typically used in combination with -n command line option,
which would turn off the default printing.

$ cat programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it by Brian W. Kernighan

Some people, when confronted with a problem, think - I know, I will
use regular expressions. Now they have two problems by Jamie Zawinski

A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors by Leon Bambrick

$ # same as: grep 'twice' programming_quotes.txt
$ sed -n '/twice/p' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.
$ # same as: grep 'e th' programming_quotes.txt
$ sed -n '/e th/p' programming_quotes.txt
Therefore, if you write the code as cleverly as possible, you are,
A language that does not affect the way you think about programming,

The substitute command provides p as a flag. In such a case, the modified line would be
printed only if the substitution succeeded.

$ # same as: grep '1' programming_quotes.txt | sed 's/1/one/g'
$ sed -n 's/1/one/gp' programming_quotes.txt
naming things, and off-by-one errors by Leon Bambrick

$ # filter + substitution + p combination
$ # same as: grep 'not' programming_quotes.txt | sed 's/in/**/g'
$ sed -n '/not/ s/in/**/gp' programming_quotes.txt
by def**ition, not smart enough to debug it by Brian W. Kernighan

18

A language that does not affect the way you th**k about programm**g,
is not worth know**g by Alan Perlis

Using !p with -n option will be equivalent to using d command.

$ # same as: sed '/at/d'
$ printf 'sea\neat\ndrop\n' | sed -n '/at/!p'
sea
drop

Here’s an example of using p command without the -n option.

$ # duplicate every line
$ seq 2 | sed 'p'
1
1
2
2

Quit commands

Using q command will exit sed immediately, without any further processing.

$ # quits after an input line containing 'if' is found
$ sed '/if/q' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,

Q command is similar to q but won’t print the matching line.

$ # matching line won't be printed
$ sed '/if/Q' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.

Use tac to get all lines starting from last occurrence of the search string with respect to
entire file content.

$ tac programming_quotes.txt | sed '/not/q' | tac
is not worth knowing by Alan Perlis

There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors by Leon Bambrick

You can optionally provide an exit status (from 0 to 255) along with the quit commands.

$ printf 'sea\neat\ndrop\n' | sed '/at/q2'
sea
eat
$ echo $?
2

$ printf 'sea\neat\ndrop\n' | sed '/at/Q3'
sea

19

$ echo $?
3

Be careful if you want to use q or Q commands with multiple files, as sed
will stop even if there are other files to process. You could use a mixed address
range as a workaround. See also unix.stackexchange: applying q to multiple files.

Multiple commands

Commands seen so far can be specified more than once by separating them using ; or using
the -e command line option. See sed manual: Multiple commands syntax for more details.

$ # print all input lines as well as modified lines
$ printf 'sea\neat\ndrop\n' | sed -n -e 'p' -e 's/at/AT/p'
sea
eat
eAT
drop

$ # equivalent command to above example using ; instead of -e
$ # space around ; is optional
$ printf 'sea\neat\ndrop\n' | sed -n 'p; s/at/AT/p'
sea
eat
eAT
drop

Another way is to separate the commands using literal newline character. If more than 2-3
lines are needed, it is better to use a sed script instead.

$ # here, each command is separated by literal newline character
$ # > at start of line indicates continuation of multiline shell command
$ sed -n '
> /not/ s/in/**/gp
> s/1/one/gp
> s/2/two/gp
> ' programming_quotes.txt
by def**ition, not smart enough to debug it by Brian W. Kernighan
A language that does not affect the way you th**k about programm**g,
is not worth know**g by Alan Perlis
There are two hard problems in computer science: cache invalidation,
naming things, and off-by-one errors by Leon Bambrick

Do not use multiple commands to construct conditional OR of multiple search
strings, as you might get lines duplicated in the output. For example, check what
output you get for sed -ne '/use/p; /two/p' programming_quotes.txt com-
mand. You can use regular expression feature alternation for such cases.

To execute multiple commands for a common filter, use {} to group the commands. You can
also nest them if needed.

20

https://unix.stackexchange.com/questions/309514/sed-apply-changes-in-multiple-files
https://www.gnu.org/software/sed/manual/sed.html#Multiple-commands-syntax

$ # same as: sed -n 'p; s/at/AT/p'
$ printf 'sea\neat\ndrop\n' | sed '/at/{p; s/at/AT/}'
sea
eat
eAT
drop

$ # spaces around {} is optional
$ printf 'gates\nnot\nused\n' | sed '/e/{s/s/*/g; s/t/*/g}'
ga*e*
not
u*ed

Command grouping is an easy way to construct conditional AND of multiple search strings.

$ # same as: grep 'in' programming_quotes.txt | grep 'not'
$ sed -n '/in/{/not/p}' programming_quotes.txt
by definition, not smart enough to debug it by Brian W. Kernighan
A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

$ # same as: grep 'in' programming_quotes.txt | grep 'not' | grep 'you'
$ sed -n '/in/{/not/{/you/p}}' programming_quotes.txt
A language that does not affect the way you think about programming,

$ # same as: grep 'not' programming_quotes.txt | grep -v 'you'
$ sed -n '/not/{/you/!p}' programming_quotes.txt
by definition, not smart enough to debug it by Brian W. Kernighan
is not worth knowing by Alan Perlis

Other solutions using alternation feature of regular expressions and sed ’s control structures
will be discussed later.

Line addressing

Line numbers can also be used as filtering criteria.

$ # here, 3 represents the address for print command
$ # same as: head -n3 programming_quotes.txt | tail -n1 and sed '3!d'
$ sed -n '3p' programming_quotes.txt
by definition, not smart enough to debug it by Brian W. Kernighan

$ # print 2nd and 5th line
$ sed -n '2p; 5p' programming_quotes.txt
Therefore, if you write the code as cleverly as possible, you are,
Some people, when confronted with a problem, think - I know, I will

$ # substitution only on 2nd line
$ printf 'gates\nnot\nused\n' | sed '2 s/t/*/g'
gates

21

no*
used

As a special case, $ indicates the last line of the input.

$ # same as: tail -n1 programming_quotes.txt
$ sed -n '$p' programming_quotes.txt
naming things, and off-by-1 errors by Leon Bambrick

For large input files, use q command to avoid processing unnecessary input lines.

$ seq 3542 4623452 | sed -n '2452{p; q}'
5993
$ seq 3542 4623452 | sed -n '250p; 2452{p; q}'
3791
5993

$ # here is a sample time comparison
$ time seq 3542 4623452 | sed -n '2452{p; q}' > f1
real 0m0.003s
$ time seq 3542 4623452 | sed -n '2452p' > f2
real 0m0.256s

Mimicking head command using line addressing and q command.

$ # same as: seq 23 45 | head -n5
$ seq 23 45 | sed '5q'
23
24
25
26
27

Print only line number

The = command will display the line numbers of matching lines.

$ # gives both line number and matching line
$ grep -n 'not' programming_quotes.txt
3:by definition, not smart enough to debug it by Brian W. Kernighan
8:A language that does not affect the way you think about programming,
9:is not worth knowing by Alan Perlis

$ # gives only line number of matching line
$ # note the use of -n option to avoid default printing
$ sed -n '/not/=' programming_quotes.txt
3
8
9

If needed, matching line can also be printed. But there will be a newline character between
the matching line and line number.

22

$ sed -n '/off/{=; p}' programming_quotes.txt
12
naming things, and off-by-1 errors by Leon Bambrick

$ sed -n '/off/{p; =}' programming_quotes.txt
naming things, and off-by-1 errors by Leon Bambrick
12

Address range

So far, filtering has been based on specific line number or lines matching the given
/REGEXP/FLAGS pattern. Address range gives the ability to define a starting address and an
ending address, separated by a comma.

$ # note that all the matching ranges are printed
$ sed -n '/are/,/by/p' programming_quotes.txt
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it by Brian W. Kernighan
There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors by Leon Bambrick

$ # same as: sed -n '3,8!p'
$ seq 15 24 | sed '3,8d'
15
16
23
24

Line numbers and string matching can be mixed.

$ sed -n '5,/use/p' programming_quotes.txt
Some people, when confronted with a problem, think - I know, I will
use regular expressions. Now they have two problems by Jamie Zawinski

$ # same as: sed '/smart/Q'
$ # inefficient, but this will work for multiple file inputs
$ sed '/smart/,$d' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,

If the second filter condition doesn’t match, lines starting from first condition to last line of
the input will be matched.

$ # there's a line containing 'affect' but doesn't have matching pair
$ sed -n '/affect/,/XYZ/p' programming_quotes.txt
A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors by Leon Bambrick

23

The second address will always be used as a filtering condition only from the line that comes
after the line that satisfied the first address. For example, if the same search pattern is used
for both the addresses, there’ll be at least two lines in output (provided there are lines in the
input after the first matching line).

$ # there's no line containing 'worth' after the 9th line
$ # so, rest of the file gets matched
$ sed -n '9,/worth/p' programming_quotes.txt
is not worth knowing by Alan Perlis

There are 2 hard problems in computer science: cache invalidation,
naming things, and off-by-1 errors by Leon Bambrick

As a special case, the first address can be 0 if the second one is a search pattern. This allows
the search pattern to be matched against first line of the file.

$ # same as: sed '/in/q'
$ # inefficient, but this will work for multiple file inputs
$ sed -n '0,/in/p' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.

$ # same as: sed '/not/q'
$ sed -n '0,/not/p' programming_quotes.txt
Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it by Brian W. Kernighan

Relative addressing

Prefixing + to line number as the second address gives relative filtering. This is similar
to using grep -A<num> --no-group-separator but grep will start a new group if a line
matches within context lines.

$ # line matching 'not' and 2 lines after
$ # won't be same as: grep -A2 --no-group-separator 'not'
$ sed -n '/not/,+2p' programming_quotes.txt
by definition, not smart enough to debug it by Brian W. Kernighan

Some people, when confronted with a problem, think - I know, I will
A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

$ # the first address can be a line number too
$ # helpful when it is programmatically constructed in a script
$ sed -n '5,+1p' programming_quotes.txt
Some people, when confronted with a problem, think - I know, I will
use regular expressions. Now they have two problems by Jamie Zawinski

You can construct an arithmetic progression with start and step values separated by the ~
symbol. i~j will filter lines numbered i+0j , i+1j , i+2j , i+3j , etc. So, 1~2 means

24

all odd numbered lines and 5~3 means 5th, 8th, 11th, etc.

$ # print even numbered lines
$ seq 10 | sed -n '2~2p'
2
4
6
8
10

$ # delete lines numbered 2+0*4, 2+1*4, 2+2*4, etc
$ seq 7 | sed '2~4d'
1
3
4
5
7

If i,~j is used (note the ,) then the meaning changes completely. After the start address,
the closest line number which is a multiple of j will mark the end address. The start address
can be specified using search pattern as well.

$ # here, closest multiple of 4 is 4th line
$ seq 10 | sed -n '2,~4p'
2
3
4
$ # here, closest multiple of 4 is 8th line
$ seq 10 | sed -n '5,~4p'
5
6
7
8

$ # line matching on 'regular' is 6th line, so ending is 9th line
$ sed -n '/regular/,~3p' programming_quotes.txt
use regular expressions. Now they have two problems by Jamie Zawinski

A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

n and N commands

So far, the commands used have all been processing only one line at a time. The address range
option provides the ability to act upon a group of lines, but the commands still operate one
line at a time for that group. There are cases when you want a command to handle a string
that contains multiple lines. As mentioned in the preface, this book will not cover advanced
commands related to multiline processing and I highly recommend using awk or perl for
such scenarios. However, this section will introduce two commands n and N which are
relatively easier to use and will be seen in coming chapters as well.

25

This is also a good place to give more details about how sed works. Quoting from sed manual:
How sed Works:

sed maintains two data buffers: the active pattern space, and the auxiliary hold
space. Both are initially empty.
sed operates by performing the following cycle on each line of input: first, sed
reads one line from the input stream, removes any trailing newline, and places it
in the pattern space. Then commands are executed; each command can have an
address associated to it: addresses are a kind of condition code, and a command
is only executed if the condition is verified before the command is to be executed.
When the end of the script is reached, unless the -n option is in use, the contents
of pattern space are printed out to the output stream, adding back the trailing
newline if it was removed. Then the next cycle starts for the next input line.

The pattern space buffer has only contained single line of input in all the examples seen so
far. By using n and N commands, you can change the contents of pattern space and
use commands to act upon entire contents of this data buffer. For example, you can perform
substitution on two or more lines at once.

First up, the n command. Quoting from sed manual: Often-Used Commands:

If auto-print is not disabled, print the pattern space, then, regardless, replace the
pattern space with the next line of input. If there is no more input then sed exits
without processing any more commands.

$ # same as: sed -n '2~2p'
$ # n will replace pattern space with next line of input
$ # as -n option is used, the replaced line won't be printed
$ # then the new line is printed as p command is used
$ seq 10 | sed -n 'n; p'
2
4
6
8
10

$ # if line contains 't', replace pattern space with next line
$ # substitute all 't' with 'TTT' for the new line thus fetched
$ # note that 't' wasn't substituted in the line that got replaced
$ # replaced pattern space gets printed as -n option is NOT used here
$ printf 'gates\nnot\nused\n' | sed '/t/{n; s/t/TTT/g}'
gates
noTTT
used

Next, the N command. Quoting from sed manual: Less Frequently-Used Commands:

Add a newline to the pattern space, then append the next line of input to the pat-
tern space. If there is no more input then sed exits without processing any more
commands.
When -z is used, a zero byte (the ascii ‘NUL’ character) is added between the lines
(instead of a new line).

26

https://www.gnu.org/software/sed/manual/sed.html#Execution-Cycle
https://www.gnu.org/software/sed/manual/sed.html#Execution-Cycle
https://www.gnu.org/software/sed/manual/sed.html#Common-Commands
https://www.gnu.org/software/sed/manual/sed.html#Other-Commands

$ # append next line to pattern space
$ # and then replace newline character with colon character
$ seq 7 | sed 'N; s/\n/:/'
1:2
3:4
5:6
7

$ # if line contains 'at', the next line gets appended to pattern space
$ # then the substitution is performed on the two lines in the buffer
$ printf 'gates\nnot\nused\n' | sed '/at/{N; s/s\nnot/d/}'
gated
used

See also sed manual: N command on the last line. Escape sequences like \n
will be discussed in detail later.

See grymoire: sed tutorial if you wish to explore about the data buffers in
detail and learn about the various multiline commands.

Cheatsheet and summary

Note Description

ADDR cmd Execute cmd only if input line satisfies the ADDR condition
ADDR can be REGEXP or line number or a combination of them

/at/d delete all lines based on the given REGEXP
/at/!d don’t delete lines matching the given REGEXP
/twice/p print all lines based on the given REGEXP

as print is default action, usually p is paired with -n option
/not/ s/in/**/gp substitute only if line matches given REGEXP

and print only if substitution succeeds
/if/q quit immediately after printing current pattern space

further input files, if any, won’t be processed
/if/Q quit immediately without printing current pattern space
/at/q2 both q and Q can additionally use 0-255 as exit code
-e 'cmd1' -e 'cmd2' execute multiple commands one after the other
cmd1; cmd2 execute multiple commands one after the other

note that not all commands can be constructed this way
commands can also be separated by literal newline character

ADDR {cmds} group one or more commands to be executed for given ADDR
groups can be nested as well
ex: /in/{/not/{/you/p}} conditional AND of 3 REGEXPs

2p line addressing, print only 2nd line
$ special address to indicate last line of input
2452{p; q} quit early to avoid processing unnecessary lines
/not/= print line number instead of matching line
ADDR1,ADDR2 start and end addresses to operate upon

27

https://www.gnu.org/software/sed/manual/sed.html#N_005fcommand_005flast_005fline
https://www.grymoire.com/Unix/Sed.html

Note Description

if ADDR2 doesn’t match, lines till end of file gets processed
/are/,/by/p print all groups of line matching the REGEXPs
3,8d delete lines numbered 3 to 8
5,/use/p line number and REGEXP can be mixed
0,/not/p inefficient equivalent of /not/q but works for multiple files
ADDR,+N all lines matching the ADDR and N lines after
i~j arithmetic progression with i as start and j as step
ADDR,~j closest multiple of j wrt line matching the ADDR
pattern space active data buffer, commands work on this content
n if -n option isn’t used, pattern space gets printed

and then pattern space is replaced with the next line of input
exit without executing other commands if there’s no more input

N add newline (or NUL for -z) to the pattern space
and then append next line of input
exit without executing other commands if there’s no more input

This chapter introduced the filtering capabilities of sed and how it can be combined with
sed commands to process only lines of interest instead of entire input file. Filtering can be
specified using a REGEXP, line number or a combination of them. You also learnt various ways
to compose multiple sed commands. In the next chapter, you will learn syntax and features
of regular expression as implemented in sed command.

Exercises

a) Remove only the third line of given input.

$ seq 34 37 | sed ##### add your solution here
34
35
37

b) Display only fourth, fifth, sixth and seventh lines for the given input.

$ seq 65 78 | sed ##### add your solution here
68
69
70
71

c) For the input file addr.txt , replace all occurrences of are with are not and is
with is not only from line number 4 till end of file. Also, only the lines that were changed
should be displayed in the output.

$ cat addr.txt
Hello World
How are you
This game is good
Today is sunny

28

12345
You are funny

$ sed ##### add your solution here
Today is not sunny
You are not funny

d) Use sed to get the output shown below for the given input. You’ll have to first understand
the logic behind input to output transformation and then use commands introduced in this
chapter to construct a solution.

$ seq 15 | sed ##### add your solution here
2
4
7
9
12
14

e) For the input file addr.txt , display all lines from start of the file till the first occurrence
of game .

$ sed ##### add your solution here
Hello World
How are you
This game is good

f) For the input file addr.txt , display all lines that contain is but not good .

$ sed ##### add your solution here
Today is sunny

g) See Gotchas and Tricks chapter and correct the command to get the output as shown below.

$ # wrong output
$ seq 11 | sed 'N; N; s/\n/-/g'
1-2-3
4-5-6
7-8-9
10
11

$ # expected output
$ seq 11 | sed ##### add your solution here
1-2-3
4-5-6
7-8-9
10-11

h) For the input file addr.txt , add line numbers in the format as shown below.

$ sed ##### add your solution here
1

29

Hello World
2
How are you
3
This game is good
4
Today is sunny
5
12345
6
You are funny

i) For the input file addr.txt , print all lines that contain are and the line that comes after
such a line, if any.

$ sed ##### add your solution here
How are you
This game is good
You are funny

Bonus: For the above input file, will sed -n '/is/,+1 p' addr.txt produce identical results
as grep -A1 'is' addr.txt ? If not, why?

j) Print all lines if their line numbers follow the sequence 1, 15, 29, 43, etc but not if the
line contains 4 in it.

$ seq 32 100 | sed ##### add your solution here
32
60
88

30

BRE/ERE Regular Expressions

This chapter will cover Basic and Extended Regular Expressions as implemented in GNU sed .
Though not strictly conforming to POSIX specifications, most of it is applicable to other sed
implementations as well. Unless otherwise indicated, examples and descriptions will assume
ASCII input.

By default, sed treats the search pattern as Basic Regular Expression (BRE). Using -E
option will enable Extended Regular Expression (ERE). Older versions used -r for ERE,
which can still be used, but -E is more portable. In GNU sed , BRE and ERE only differ in
how metacharacters are applied, there’s no difference in features.

Line Anchors

Instead of matching anywhere in the line, restrictions can be specified. These restrictions
are made possible by assigning special meaning to certain characters and escape sequences.
The characters with special meaning are known as metacharacters in regular expressions
parlance. In case you need to match those characters literally, you need to escape them with
a \ (discussed in Matching the metacharacters section).

There are two line anchors:

• ˆ metacharacter restricts the matching to start of line
• $ metacharacter restricts the matching to end of line

$ # lines starting with 'sp'
$ printf 'spared no one\npar\nspar\n' | sed -n '/^sp/p'
spared no one
spar

$ # lines ending with 'ar'
$ printf 'spared no one\npar\nspar\n' | sed -n '/ar$/p'
par
spar

$ # change only whole line 'par'
$ printf 'spared no one\npar\nspar\n' | sed 's/^par$/PAR/'
spared no one
PAR
spar

The anchors can be used by themselves as a pattern. Helps to insert text at start or end of
line, emulating string concatenation operations. These might not feel like useful capability,
but combined with other features they become quite a handy tool.

$ printf 'spared no one\npar\nspar\n' | sed 's/^/* /'
* spared no one
* par
* spar

$ # append only if line doesn't contain space characters

31

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html

$ printf 'spared no one\npar\nspar\n' | sed '/ /! s/$/./'
spared no one
par.
spar.

Word Anchors

The second type of restriction is word anchors. A word character is any alphabet (irrespective
of case), digit and the underscore character. You might wonder why there are digits and
underscores as well, why not only alphabets? This comes from variable and function naming
conventions — typically alphabets, digits and underscores are allowed. So, the definition is
more programming oriented than natural language.

The escape sequence \b denotes a word boundary. This works for both start of word and end
of word anchoring. Start of word means either the character prior to the word is a non-word
character or there is no character (start of line). Similarly, end of word means the character
after the word is a non-word character or no character (end of line). This implies that you
cannot have word boundary without a word character.

As an alternate, you can use \< to indicate start of word anchor and \> to
indicate end of word anchor. Using \b is preferred as it is more commonly used
in other regular expression implementations and has \B as its opposite.

\bREGEXP\b behaves a bit differently than \<REGEXP\> . See Gotchas and
Tricks chapter for details.

$ cat word_anchors.txt
sub par
spar
apparent effort
two spare computers
cart part tart mart

$ # words starting with 'par'
$ sed -n '/\bpar/p' word_anchors.txt
sub par
cart part tart mart

$ # words ending with 'par'
$ sed -n '/par\b/p' word_anchors.txt
sub par
spar

$ # only whole word 'par'
$ sed -n 's/\bpar\b/***/p' word_anchors.txt
sub ***

The word boundary has an opposite anchor too. \B matches wherever \b doesn’t match.
This duality will be seen with some other escape sequences too.

32

Negative logic is handy in many text processing situations. But use it with
care, you might end up matching things you didn’t intend.

$ # match 'par' if it is surrounded by word characters
$ sed -n '/\Bpar\B/p' word_anchors.txt
apparent effort
two spare computers

$ # match 'par' but not as start of word
$ sed -n '/\Bpar/p' word_anchors.txt
spar
apparent effort
two spare computers

$ # match 'par' but not as end of word
$ sed -n '/par\B/p' word_anchors.txt
apparent effort
two spare computers
cart part tart mart

$ echo 'copper' | sed 's/\b/:/g'
:copper:
$ echo 'copper' | sed 's/\B/:/g'
c:o:p:p:e:r

Alternation

Many a times, you’d want to search for multiple terms. In a conditional expression, you can
use the logical operators to combine multiple conditions. With regular expressions, the |
metacharacter is similar to logical OR. The regular expression will match if any of the expres-
sion separated by | is satisfied. These can have their own independent anchors as well.

Alternation is similar to using multiple -e option, but provides more flexibility with regular
expression features. The | metacharacter syntax varies between BRE and ERE. Quoting
from the manual:

In GNU sed, the only difference between basic and extended regular expressions
is in the behavior of a few special characters: ? , + , parentheses, braces ({}
), and | .

$ # BRE vs ERE
$ sed -n '/two\|sub/p' word_anchors.txt
sub par
two spare computers
$ sed -nE '/two|sub/p' word_anchors.txt
sub par
two spare computers

$ # either 'cat' or 'dog' or 'fox'
$ # note the use of 'g' flag for multiple replacements

33

$ echo 'cats dog bee parrot foxed' | sed -E 's/cat|dog|fox/--/g'
--s -- bee parrot --ed

$ # lines with whole word 'par' or lines ending with 's'
$ sed -nE '/\bpar\b|s$/p' word_anchors.txt
sub par
two spare computers

There’s some tricky situations when using alternation. If it is used for filtering a line, there is
no ambiguity. However, for use cases like substitution, it depends on a few factors. Say, you
want to replace are or spared — which one should get precedence? The bigger word
spared or the substring are inside it or based on something else?

In sed , the alternative which matches earliest in the input gets precedence. Unlike other reg-
ular expression implementations, order of alternation doesn’t affect the results. See regular-
expressions: alternation for more information on this topic.

$ # output will be same irrespective of alternation order
$ # note that 'g' flag isn't used here, so only first match gets replaced
$ echo 'cats dog bee parrot foxed' | sed -E 's/bee|parrot|at/--/'
c--s dog bee parrot foxed
$ echo 'cats dog bee parrot foxed' | sed -E 's/parrot|at|bee/--/'
c--s dog bee parrot foxed

In case of matches starting from same location, for example spar and spared , the longest
matching portion gets precedence. See also Longest match wins section for more examples.

$ echo 'spared party parent' | sed -E 's/spa|spared/**/g'
** party parent
$ echo 'spared party parent' | sed -E 's/spared|spa/**/g'
** party parent

Grouping

Often, there are some common things among the regular expression alternatives. It could be
common characters or qualifiers like the anchors. In such cases, you can group them using
a pair of parentheses metacharacters. Similar to a(b+c)d = abd+acd in maths, you get
a(b|c)d = abd|acd in regular expressions.

without grouping
$ printf 'red\nreform\nread\narrest\n' | sed -nE '/reform|rest/p'
reform
arrest
with grouping
$ printf 'red\nreform\nread\narrest\n' | sed -nE '/re(form|st)/p'
reform
arrest

without grouping
$ printf 'sub par\nspare\npart time\n' | sed -nE '/\bpar\b|\bpart\b/p'

34

https://www.regular-expressions.info/alternation.html
https://www.regular-expressions.info/alternation.html

sub par
part time
taking out common anchors
$ printf 'sub par\nspare\npart time\n' | sed -nE '/\b(par|part)\b/p'
sub par
part time
taking out common characters as well
you'll later learn a better technique instead of using empty alternate
$ printf 'sub par\nspare\npart time\n' | sed -nE '/\bpar(|t)\b/p'
sub par
part time

Matching the metacharacters

You have seen a few metacharacters and escape sequences that help to compose a regular
expression. To match the metacharacters literally, i.e. to remove their special meaning, prefix
those characters with a \ character. To indicate a literal \ character, use \\ . Some of
the metacharacters, like the line anchors, lose their special meaning when not used in their
customary positions. If there are many metacharacters to be escaped, try to work out if the
command can be simplified by switching between ERE and BRE.

$ # line anchors aren't special away from customary positions
$ echo 'a^2 + b^2 - C*3' | sed -n '/b^2/p'
a^2 + b^2 - C*3
$ echo '$a = $b + $c' | sed -n '/$b/p'
$a = $b + $c
$ # escape line anchors to match them literally at customary positions
$ echo '$a = $b + $c' | sed 's/\$//g'
a = b + c

$ # BRE vs ERE
$ printf '(a/b) + c\n3 + (a/b) - c\n' | sed -n '/^(a\/b)/p'
(a/b) + c
$ printf '(a/b) + c\n3 + (a/b) - c\n' | sed -nE '/^\(a\/b\)/p'
(a/b) + c

Handling the metacharacters in replacement section will be discussed in Backreferences sec-
tion.

Using different delimiters

The / character is idiomatically used as the delimiter for REGEXP. But any character other
than \ and the newline character can be used instead. This helps to avoid or reduce the need
for escaping delimiter characters. The syntax is simple for substitution and transliteration
commands, just use a different character instead of / .

$ # instead of this
$ echo '/home/learnbyexample/reports' | sed 's/\/home\/learnbyexample\//~\//'

35

~/reports
$ # use a different delimiter
$ echo '/home/learnbyexample/reports' | sed 's#/home/learnbyexample/#~/#'
~/reports

$ echo 'a/b/c/d' | sed 'y/a\/d/1-4/'
1-b-c-4
$ echo 'a/b/c/d' | sed 'y,a/d,1-4,'
1-b-c-4

For address matching, syntax is a bit different, the first delimiter has to be escaped. For
address ranges, start and end REGEXP can have different delimiters, as they are independent.

$ printf '/foo/bar/1\n/foo/baz/1\n'
/foo/bar/1
/foo/baz/1

$ # here ; is used as the delimiter
$ printf '/foo/bar/1\n/foo/baz/1\n' | sed -n '\;/foo/bar/;p'
/foo/bar/1

See also a bit of history on why / is commonly used as delimiter.

The dot meta character

The dot metacharacter serves as a placeholder to match any character (including newline
character). Later you’ll learn how to define your own custom placeholder for limited set of
characters.

$ # 3 character sequence starting with 'c' and ending with 't'
$ echo 'tac tin cot abc:tyz excited' | sed 's/c.t/-/g'
ta-in - ab-yz ex-ed

$ # any character followed by 3 and again any character
$ printf '42\t35\n' | sed 's/.3.//'
42

$ # N command is handy here to show that . matches \n as well
$ printf 'abc\nxyz\n' | sed 'N; s/c.x/ /'
ab yz

Quantifiers

As an analogy, alternation provides logical OR. Combining the dot metacharacter . and
quantifiers (and alternation if needed) paves a way to perform logical AND. For example, to
check if a string matches two patterns with any number of characters in between. Quantifiers
can be applied to both characters and groupings. Apart from ability to specify exact quantity
and bounded range, these can also match unbounded varying quantities.

36

https://www.reddit.com/r/commandline/comments/3lhgwh/why_did_people_standardize_on_using_forward/cvgie7j/

First up, the ? metacharacter which quantifies a character or group to match 0 or 1
times. This helps to define optional patterns and build terser patterns compared to groupings
for some cases.

$ # same as: sed -E 's/\b(fe.d|fed)\b/X/g'
$ # BRE version: sed 's/fe.\?d\b/X/g'
$ echo 'fed fold fe:d feeder' | sed -E 's/\bfe.?d\b/X/g'
X fold X feeder

$ # same as: sed -nE '/\bpar(|t)\b/p'
$ printf 'sub par\nspare\npart time\n' | sed -nE '/\bpart?\b/p'
sub par
part time

$ # same as: sed -E 's/part|parrot/X/g'
$ echo 'par part parrot parent' | sed -E 's/par(ro)?t/X/g'
par X X parent
$ # same as: sed -E 's/part|parrot|parent/X/g'
$ echo 'par part parrot parent' | sed -E 's/par(en|ro)?t/X/g'
par X X X

$ # both '<' and '\<' are replaced with '\<'
$ echo 'blah \< foo bar < blah baz <' | sed -E 's/\\?</\\</g'
blah \< foo bar \< blah baz \<

The * metacharacter quantifies a character or group to match 0 or more times. There is
no upper bound, more details will be discussed in the next section.

$ # 'f' followed by zero or more of 'e' followed by 'd'
$ echo 'fd fed fod fe:d feeeeder' | sed 's/fe*d/X/g'
X X fod fe:d Xer

$ # zero or more of '1' followed by '2'
$ echo '3111111111125111142' | sed 's/1*2/-/g'
3-511114-

The + metacharacter quantifies a character or group to match 1 or more times. Similar
to * quantifier, there is no upper bound.

$ # 'f' followed by one or more of 'e' followed by 'd'
$ # BRE version: sed 's/fe\+d/X/g'
$ echo 'fd fed fod fe:d feeeeder' | sed -E 's/fe+d/X/g'
fd X fod fe:d Xer

$ # 'f' followed by at least one of 'e' or 'o' or ':' followed by 'd'
$ echo 'fd fed fod fe:d feeeeder' | sed -E 's/f(e|o|:)+d/X/g'
fd X X X Xer

$ # one or more of '1' followed by optional '4' and then '2'
$ echo '3111111111125111142' | sed -E 's/1+4?2/-/g'
3-5-

37

You can specify a range of integer numbers, both bounded and unbounded, using {}
metacharacters. There are four ways to use this quantifier as listed below:

Pattern Description

{m,n} match m to n times
{m,} match at least m times
{,n} match up to n times (including 0 times)
{n} match exactly n times

$ # note that inside {} space is not allowed around ,
$ # BRE version: sed 's/ab\{1,4\}c/X/g'
$ echo 'ac abc abbc abbbc abbbbbbbbc' | sed -E 's/ab{1,4}c/X/g'
ac X X X abbbbbbbbc

$ echo 'ac abc abbc abbbc abbbbbbbbc' | sed -E 's/ab{3,}c/X/g'
ac abc abbc X X

$ echo 'ac abc abbc abbbc abbbbbbbbc' | sed -E 's/ab{,2}c/X/g'
X X X abbbc abbbbbbbbc

$ echo 'ac abc abbc abbbc abbbbbbbbc' | sed -E 's/ab{3}c/X/g'
ac abc abbc X abbbbbbbbc

The {} metacharacters have to be escaped to match them literally. However,
unlike () metacharacters, escaping { alone is enough.

Next up, how to construct conditional AND using dot metacharacter and quantifiers. To allow
matching in any order, you’ll have to bring in alternation as well. But, for more than 3 patterns,
the combinations become too many to write and maintain.

$ # match 'Error' followed by zero or more characters followed by 'valid'
$ echo 'Error: not a valid input' | sed -n '/Error.*valid/p'
Error: not a valid input

$ # 'cat' followed by 'dog' or 'dog' followed by 'cat'
$ echo 'two cats and a dog' | sed -E 's/cat.*dog|dog.*cat/pets/'
two pets
$ echo 'two dogs and a cat' | sed -E 's/cat.*dog|dog.*cat/pets/'
two pets

Longest match wins

You’ve already seen an example with alternation, where the longest matching portion was
chosen if two alternatives started from same location. For example spar|spared will result
in spared being chosen over spar . The same applies whenever there are two or more
matching possibilities with quantifiers starting from same location. For example, f.?o will
match foo instead of fo if the input string to match is foot .

38

$ # longest match among 'foo' and 'fo' wins here
$ echo 'foot' | sed -E 's/f.?o/X/'
Xt
$ # everything will match here
$ echo 'car bat cod map scat dot abacus' | sed 's/.*/X/'
X

$ # longest match happens when (1|2|3)+ matches up to '1233' only
$ # so that '12baz' can match as well
$ echo 'foo123312baz' | sed -E 's/o(1|2|3)+(12baz)?/X/'
foX
$ # in other implementations like 'perl', that is not the case
$ # quantifiers match as much as possible, but precedence is left to right
$ echo 'foo123312baz' | perl -pe 's/o(1|2|3)+(12baz)?/X/'
foXbaz

While determining the longest match, overall regular expression matching is also considered.
That’s how Error.*valid example worked. If .* had consumed everything after Error ,
there wouldn’t be any more characters to try to match after valid . So, among the varying
quantity of characters to match for .* , the longest portion that satisfies the overall regular
expression is chosen. Something like a.*b will match from first a in the input string to
the last b in the string. In other implementations, like perl , this is achieved through a
process called backtracking. Both approaches have their own advantages and disadvantages
and have cases where the pattern can result in exponential time consumption.

$ # from start of line to last 'm' in the line
$ echo 'car bat cod map scat dot abacus' | sed 's/.*m/-/'
-ap scat dot abacus

$ # from first 'b' to last 't' in the line
$ echo 'car bat cod map scat dot abacus' | sed 's/b.*t/-/'
car - abacus

$ # from first 'b' to last 'at' in the line
$ echo 'car bat cod map scat dot abacus' | sed 's/b.*at/-/'
car - dot abacus

$ # here 'm*' will match 'm' zero times as that gives the longest match
$ echo 'car bat cod map scat dot abacus' | sed 's/a.*m*/-/'
c-

Character classes

To create a custom placeholder for limited set of characters, enclose them inside []
metacharacters. It is similar to using single character alternations inside a grouping, but with
added flexibility and features. Character classes have their own versions of metacharacters
and provide special predefined sets for common use cases. Quantifiers are also applicable to
character classes.

39

$ # same as: sed -nE '/cot|cut/p' and sed -nE '/c(o|u)t/p'
$ printf 'cute\ncat\ncot\ncoat\ncost\nscuttle\n' | sed -n '/c[ou]t/p'
cute
cot
scuttle

$ # same as: sed -nE '/.(a|e|o)+t/p'
$ printf 'meeting\ncute\nboat\nat\nfoot\n' | sed -nE '/.[aeo]+t/p'
meeting
boat
foot

$ # same as: sed -E 's/\b(s|o|t)(o|n)\b/X/g'
$ echo 'no so in to do on' | sed -E 's/\b[sot][on]\b/X/g'
no X in X do X

$ # lines made up of letters 'o' and 'n', line length at least 2
$ # words.txt contains dictionary words, one word per line
$ sed -nE '/^[on]{2,}$/p' words.txt
no
non
noon
on

Character classes have their own metacharacters to help define the sets succinctly. Metachar-
acters outside of character classes like ˆ , $, () etc either don’t have special meaning
or have completely different one inside the character classes. First up, the - metacharacter
that helps to define a range of characters instead of having to specify them all individually.

$ # same as: sed -E 's/[0123456789]+/-/g'
$ echo 'Sample123string42with777numbers' | sed -E 's/[0-9]+/-/g'
Sample-string-with-numbers

$ # whole words made up of lowercase alphabets and digits only
$ echo 'coat Bin food tar12 best' | sed -E 's/\b[a-z0-9]+\b/X/g'
X Bin X X X

$ # whole words made up of lowercase alphabets, starting with 'p' to 'z'
$ echo 'road i post grip read eat pit' | sed -E 's/\b[p-z][a-z]*\b/X/g'
X i X grip X eat X

Character classes can also be used to construct numeric ranges. However, it is easy to miss
corner cases and some ranges are complicated to design. See also regular-expressions: Match-
ing Numeric Ranges with a Regular Expression.

$ # numbers between 10 to 29
$ echo '23 154 12 26 34' | sed -E 's/\b[12][0-9]\b/X/g'
X 154 X X 34
$ # numbers >= 100 with optional leading zeros
$ echo '0501 035 154 12 26 98234' | sed -E 's/\b0*[1-9][0-9]{2,}\b/X/g'
X 035 X 12 26 X

40

https://www.regular-expressions.info/numericranges.html
https://www.regular-expressions.info/numericranges.html

Next metacharacter is ˆ which has to specified as the first character of the character class.
It negates the set of characters, so all characters other than those specified will be matched.
As highlighted earlier, handle negative logic with care, you might end up matching more than
you wanted.

$ # replace all non-digits
$ echo 'Sample123string42with777numbers' | sed -E 's/[^0-9]+/-/g'
-123-42-777-

$ # delete last two columns based on a delimiter
$ echo 'foo:123:bar:baz' | sed -E 's/(:[^:]+){2}$//'
foo:123

$ # sequence of characters surrounded by unique character
$ echo 'I like "mango" and "guava"' | sed -E 's/"[^"]+"/X/g'
I like X and X

$ # sometimes it is simpler to positively define a set than negation
$ # same as: sed -nE '/^[^aeiou]*$/p'
$ printf 'tryst\nfun\nglyph\npity\nwhy\n' | sed '/[aeiou]/d'
tryst
glyph
why

Some commonly used character sets have predefined escape sequences:

• \w matches all word characters [a-zA-Z0-9_] (recall the description for word bound-
aries)

• \W matches all non-word characters (recall duality seen earlier, like \b and \B)
• \s matches all whitespace characters: tab, newline, vertical tab, form feed, carriage
return and space

• \S matches all non-whitespace characters

These escape sequences cannot be used inside character classes. Also, as mentioned earlier,
these definitions assume ASCII input.

sed doesn’t support \d and \D , commonly featured in other implemen-
tations as a shortcut for all the digits and non-digits.

$ # match all non-word characters
$ echo 'load;err_msg--\nant,r2..not' | sed -E 's/\W+/-/g'
load-err_msg-nant-r2-not

$ # replace all sequences of whitespaces with single space
$ printf 'hi \v\f there.\thave \ra nice\t\tday\n' | sed -E 's/\s+/ /g'
hi there. have a nice day

$ # \w would simply match \ and w inside character classes
$ echo 'w=y\x+9*3' | sed 's/[\w=]//g'
yx+9*3

A named character set is defined by a name enclosed between [: and :] and has to be

41

used within a character class [] , along with any other characters as needed.

Named set Description

[:digit:] [0-9]
[:lower:] [a-z]
[:upper:] [A-Z]
[:alpha:] [a-zA-Z]
[:alnum:] [0-9a-zA-Z]
[:xdigit:] [0-9a-fA-F]
[:cntrl:] control characters — first 32 ASCII characters and 127th (DEL)
[:punct:] all the punctuation characters
[:graph:] [:alnum:] and [:punct:]
[:print:] [:alnum:] , [:punct:] and space
[:blank:] space and tab characters
[:space:] whitespace characters, same as \s

$ echo 'err_msg xerox ant m_2 P2 load1 eel' | sed -E 's/\b[[:lower:]]+\b/X/g'
err_msg X X m_2 P2 load1 X

$ echo 'err_msg xerox ant m_2 P2 load1 eel' | sed -E 's/\b[[:lower:]_]+\b/X/g'
X X X m_2 P2 load1 X

$ echo 'err_msg xerox ant m_2 P2 load1 eel' | sed -E 's/\b[[:alnum:]]+\b/X/g'
err_msg X X m_2 X X X

$ echo ',pie tie#ink-eat_42' | sed -E 's/[^[:punct:]]+//g'
,#-_

Specific placement is needed to match character class metacharacters literally.

Combinations like [. or [: cannot be used together to mean two individual
characters, as they have special meaning within [] . See sed manual: Character
Classes and Bracket Expressions for more details.

$ # - should be first or last character within []
$ echo 'ab-cd gh-c 12-423' | sed -E 's/[a-z-]{2,}/X/g'
X X 12-423

$ #] should be first character within []
$ printf 'int a[5]\nfoo\n1+1=2\n' | sed -n '/[=]]/p'
$ printf 'int a[5]\nfoo\n1+1=2\n' | sed -n '/[]=]/p'
int a[5]
1+1=2

$ # to match [use [anywhere in the character set
$ # but not combinations like [. or [:
$ # [][] will match both [and]
$ echo 'int a[5]' | sed -n '/[x[.y]/p'
sed: -e expression #1, char 9: unterminated address regex

42

https://www.gnu.org/software/sed/manual/sed.html#Character-Classes-and-Bracket-Expressions
https://www.gnu.org/software/sed/manual/sed.html#Character-Classes-and-Bracket-Expressions

$ echo 'int a[5]' | sed -n '/[x[y.]/p'
int a[5]

$ # ^ should be other than first character within []
$ echo 'f*(a^b) - 3*(a+b)/(a-b)' | sed 's/a[+^]b/c/g'
f*(c) - 3*(c)/(a-b)

Escape sequences

Certain ASCII characters like tab \t , carriage return \r , newline \n , etc have escape
sequences to represent them. Additionally, any character can be represented using their ASCII
value in decimal \dNNN or octal \oNNN or hexadecimal \xNN formats. Unlike character
set escape sequences like \w , these can be used inside character classes. As \ is special
inside character class, use \\ to represent it literally (technically, this is only needed if the
combination of \ and the character(s) that follows is a valid escape sequence).

$ # using \t to represent tab character
$ printf 'foo\tbar\tbaz\n' | sed 's/\t/ /g'
foo bar baz
$ echo 'a b c' | sed 's/ /\t/g'
a b c

$ # these escape sequence work inside character class too
$ printf 'a\t\r\fb\vc\n' | sed -E 's/[\t\v\f\r]+/:/g'
a:b:c

$ # representing single quotes
$ # use \d039 and \o047 for decimal and octal respectively
$ echo "universe: '42'" | sed 's/\x27/"/g'
universe: "42"
$ echo 'universe: "42"' | sed 's/"/\x27/g'
universe: '42'

If a metacharacter is specified by ASCII value format in search section, it
will still act as the metacharacter. However, metacharacters specified by ASCII
value format in replacement section acts as a literal character. Undefined escape
sequences (both search and replacement section) will be treated as the character
it escapes, for example, \e will match e (not \ and e).

$ # \x5e is ^ character, acts as line anchor here
$ printf 'cute\ncot\ncat\ncoat\n' | sed -n '/\x5eco/p'
cot
coat

$ # & metacharacter in replacement will be discussed in next section
$ # it represents entire matched portion
$ echo 'hello world' | sed 's/.*/"&"/'
"hello world"
$ # \x26 is & character, acts as literal character here

43

$ echo 'hello world' | sed 's/.*/"\x26"/'
"&"

See sed manual: Escapes for full list and details such as precedence rules.

Backreferences

The grouping metacharacters () are also known as capture groups. They are like variables,
the string captured by () can be referred later using backreference \N where N is the
capture group you want. Leftmost (in the regular expression is \1 , next one is \2
and so on up to \9 . Backreferences can be used in both search and replacement sections.
Quantifiers can be applied to backreferences as well.

$ # whole words that have at least one consecutive repeated character
$ # word boundaries are not needed here due to longest match wins effect
$ echo 'effort flee facade oddball rat tool' | sed -E 's/\w*(\w)\1\w*/X/g'
X X facade X rat X

$ # reduce \\ to single \ and delete if it is a single \
$ echo '\[\] and \\w and \[a-zA-Z0-9_\]' | sed -E 's/(\\?)\\/\1/g'
[] and \w and [a-zA-Z0-9_]

$ # remove two or more duplicate words separated by space
$ # \b prevents false matches like 'the theatre', 'sand and stone' etc
$ echo 'aa a a a 42 f_1 f_1 f_13.14' | sed -E 's/\b(\w+)(\1)+\b/\1/g'
aa a 42 f_1 f_13.14

$ # 8 character lines having same 3 lowercase letters at start and end
$ sed -nE '/^([a-z]{3})..\1$/p' words.txt
mesdames
respires
restores
testates

As a special case, \0 or & metacharacter represents entire matched string in replacement
section.

$ # duplicate first column value as final column
$ # same as: sed -E 's/^([^,]+).*/\0,\1/'
$ echo 'one,2,3.14,42' | sed -E 's/^([^,]+).*/&,\1/'
one,2,3.14,42,one

$ # surround entire line with double quotes
$ echo 'hello world' | sed 's/.*/"&"/'
"hello world"

$ # add something at start and end of line
$ echo 'hello world' | sed 's/.*/Hi. &. Have a nice day/'
Hi. hello world. Have a nice day

44

https://www.gnu.org/software/sed/manual/sed.html#Escapes

If quantifier is applied on a pattern grouped inside () metacharacters, you’ll need an outer
() group to capture the matching portion. Other regular expression engines like PCRE (Perl
Compatible Regular Expressions) provide non-capturing group to handle such cases. In sed
, you’ll have to work around the extra capture group.

$ # surround only third column with double quotes
$ # note the numbers used in replacement section
$ echo 'one,2,3.14,42' | sed -E 's/^(([^,]+,){2})([^,]+)/\1"\3"/'
one,2,"3.14",42

Here’s is an issue for certain usage of backreferences and quantifier that was filed by yours
truly.

$ # takes some time and results in no output
$ # aim is to get words having two occurrences of repeated characters
$ # works if you use perl -ne 'print if /^(\w*(\w)\2\w*){2}$/'
$ sed -nE '/^(\w*(\w)\2\w*){2}$/p' words.txt | head -n5

$ # works when nesting is unrolled
$ sed -nE '/^\w*(\w)\1\w*(\w)\2\w*$/p' words.txt | head -n5
Abbott
Annabelle
Annette
Appaloosa
Appleseed

As \ and & are special characters in replacement section, use \\ and \& respectively
for literal representation.

$ echo 'foo and bar' | sed 's/and/[&]/'
foo [and] bar
$ echo 'foo and bar' | sed 's/and/[\&]/'
foo [&] bar

$ echo 'foo and bar' | sed 's/and/\\/'
foo \ bar

Backreference will provide the string that was matched, not the pattern that
was inside the capture group. For example, if ([0-9][a-f]) matches 3b , then
backreferencing will give 3b and not any other valid match like 8f , 0a etc.
This is akin to how variables behave in programming, only the result of expression
stays after variable assignment, not the expression itself.

Cheatsheet and summary

Note Description

BRE Basic Regular Expression, enabled by default
ERE Extended Regular Expression, enabled using -E option

note: only ERE syntax is covered below
metacharacters characters with special meaning in REGEXP

45

https://debbugs.gnu.org/cgi/bugreport.cgi?bug=26864

Note Description

ˆ restricts the match to start of line
$ restricts the match to end of line
\b restricts the match to start/end of words

word characters: alphabets, digits, underscore
\B matches wherever \b doesn’t match
\< start of word anchor
\> end of word anchor
| combine multiple patterns as conditional OR

each alternative can have independent anchors
alternative which matches earliest in the input gets precedence
and the longest portion wins in case of a tie

() group pattern(s)
a(b|c)d same as abd|acd
\ prefix metacharacters with \ to match them literally
\\ to match \ literally

switching between ERE and BRE helps in some cases
/ idiomatically used as the delimiter for REGEXP

any character except \ and newline character can also be used
. match any character, including the newline character
? match 0 or 1 times
* match 0 or more times
+ match 1 or more times
{m,n} match m to n times
{m,} match at least m times
{,n} match up to n times (including 0 times)
{n} match exactly n times
pat1.*pat2 any number of characters between pat1 and pat2
pat1.*pat2|pat2.*pat1 match both pat1 and pat2 in any order
[ae;o] match any of these characters once

quantifiers are applicable to character classes too
[3-7] range of characters from 3 to 7
[ˆ=b2] match other than = or b or 2
[a-z-] - should be first/last character to match literally
[+ˆ] ˆ shouldn’t be first character
[]=]] should be first character

combinations like [. or [: have special meaning
\w similar to [a-zA-Z0-9_] for matching word characters
\s similar to [\t\n\r\f\v] for matching whitespace characters

\W and \S for their opposites respectively
[:digit:] named character set, same as [0-9]
\xNN represent ASCII character using hexadecimal value

use \dNNN for decimal and \oNNN for octal
\N backreference, gives matched portion of Nth capture group

applies to both search and replacement sections
possible values: \1 , \2 up to \9

\0 or & represents entire matched string in replacement section

46

Regular expressions is a feature that you’ll encounter in multiple command line programs
and programming languages. It is a versatile tool for text processing. Although the features
provided by BRE/ERE implementation are less compared to those found in programming lan-
guages, they are sufficient for most of the tasks you’ll need for command line usage. It takes
a lot of time to get used to syntax and features of regular expressions, so I’ll encourage you to
practice a lot and maintain notes. It’d also help to consider it as a mini-programming language
in itself for its flexibility and complexity. In the next chapter, you’ll learn about flags that add
more features to regular expressions usage.

Exercises

a) For the given input, print all lines that start with den or end with ly .

$ lines='lovely\n1 dentist\n2 lonely\neden\nfly away\ndent\n'
$ printf '%b' "$lines" | sed ##### add your solution here
lovely
2 lonely
dent

b) Replace all occurrences of 42 with [42] unless it is at the edge of a word. Note that
word in these exercises have same meaning as defined in regular expressions.

$ echo 'hi42bye nice421423 bad42 cool_42a 42c' | sed ##### add your solution here
hi[42]bye nice[42]1[42]3 bad42 cool_[42]a 42c

c) Add [] around words starting with s and containing e and t in any order.

$ words='sequoia subtle exhibit asset sets tests site'
$ echo "$words" | sed ##### add your solution here
sequoia [subtle] exhibit asset [sets] tests [site]

d) Replace all whole words with X that start and end with the same word character.

$ echo 'oreo not a _a2_ roar took 22' | sed ##### add your solution here
X not X X X took X

e) Replace all occurrences of [4]|* with 2

$ echo '2.3/[4]|*6 foo 5.3-[4]|*9' | sed ##### add your solution here
2.3/26 foo 5.3-29

f) sed -nE '/\b[a-z](on|no)[a-z]\b/p' is same as sed -nE '/\b[a-z][on]{2}[a-z]\b/p'
. True or False? Sample input shown below might help to understand the differences, if any.

$ printf 'known\nmood\nknow\npony\ninns\n'
known
mood
know
pony
inns

g) Print all lines that start with hand and ends with no further character or s or y or
le .

47

$ lines='handed\nhand\nhandy\nunhand\nhands\nhandle\n'
$ printf '%b' "$lines" | sed ##### add your solution here
hand
handy
hands
handle

h) Replace 42//5 or 42/5 with 8 for the given input.

$ echo 'a+42//5-c pressure*3+42/5-14256' | sed ##### add your solution here
a+8-c pressure*3+8-14256

i) For the given quantifiers, what would be the equivalent form using {m,n} representation?

• ? is same as
• * is same as
• + is same as

j) True or False? In ERE, (a*|b*) is same as (a|b)*

k) For the given input, construct two different REGEXPs to get the outputs as shown below.

$ echo 'a/b(division) + c%d() - (a#(b)2(' | sed ##### add your solution here
a/b + c%d - 2(

$ echo 'a/b(division) + c%d() - (a#(b)2(' | sed ##### add your solution here
a/b + c%d - (a#2(

l) For the input file anchors.txt , convertmarkdown anchors to corresponding hyperlinks.
$ cat anchors.txt
Regular Expressions
Subexpression calls

$ sed ##### add your solution here
[Regular Expressions](#regular-expressions)
[Subexpression calls](#subexpression-calls)

48

Flags

Just like options change the default behavior of shell commands, flags are used to change
aspects of regular expressions. Some of the flags like g and p have been already discussed.
For completeness, they will be discussed again in this chapter. In regular expression parlance,
flags are also known as modifiers.

Case insensitive matching

The I flag allows to match a pattern case insensitively.

$ # match 'cat' case sensitively
$ printf 'Cat\ncOnCaT\nscatter\ncot\n' | sed -n '/cat/p'
scatter

$ # match 'cat' case insensitively
$ # note that command p cannot be used before flag I
$ printf 'Cat\ncOnCaT\nscatter\ncot\n' | sed -n '/cat/Ip'
Cat
cOnCaT
scatter

$ # match 'cat' case insensitively and replace it with 'dog'
$ printf 'Cat\ncOnCaT\nscatter\ncot\n' | sed 's/cat/dog/I'
dog
cOndog
sdogter
cot

Usually i is used for such purposes, grep -i for example. But i is a
command (discussed in append, change, insert chapter) in sed , so /REGEXP/i
cannot be used. The substitute command does allow both i and I to be used,
but I is recommended for consistency.

Changing case in replacement section

This section isn’t actually about flags, but presented in this chapter to complement the I
flag. sed provides escape sequences to change the case of replacement strings, which
might include backreferences, shell variables, etc.

Escape Sequence Description

\E indicates end of case conversion
\l convert next character to lowercase
\u convert next character to uppercase
\L convert following characters to lowercase, unless \U or \E is used
\U convert following characters to uppercase, unless \L or \E is used

49

First up, changing case of only the immediate next character after the escape sequence.

$ # match only first character of word using word boundary
$ # use & to backreference the matched character
$ # \u would then change it to uppercase
$ echo 'hello there. how are you?' | sed 's/\b\w/\u&/g'
Hello There. How Are You?

$ # change first character of word to lowercase
$ echo 'HELLO THERE. HOW ARE YOU?' | sed 's/\b\w/\l&/g'
hELLO tHERE. hOW aRE yOU?

$ # match lowercase followed by underscore followed by lowercase
$ # delete underscore and convert 2nd lowercase to uppercase
$ echo '_foo aug_price next_line' | sed -E 's/([a-z])_([a-z])/\1\u\2/g'
_foo augPrice nextLine

Next, changing case of multiple characters at a time.

$ # change all alphabets to lowercase
$ echo 'HaVE a nICe dAy' | sed 's/.*/\L&/'
have a nice day
$ # change all alphabets to uppercase
$ echo 'HaVE a nICe dAy' | sed 's/.*/\U&/'
HAVE A NICE DAY

$ # \E will stop further conversion
$ echo '_foo aug_price next_line' | sed -E 's/([a-z]+)(_[a-z]+)/\U\1\E\2/g'
_foo AUG_price NEXT_line
$ # \L or \U will override any existing conversion
$ echo 'HeLLo:bYe gOoD:beTTEr' | sed -E 's/([a-z]+)(:[a-z]+)/\L\1\U\2/Ig'
hello:BYE good:BETTER

Finally, examples where escapes can be used next to each other.

$ # uppercase first character of a word
$ # and lowercase rest of the word characters
$ # note the order of escapes used, \u\L won't work
$ echo 'HeLLo:bYe gOoD:beTTEr' | sed -E 's/[a-z]+/\L\u&/Ig'
Hello:Bye Good:Better

$ # lowercase first character of a word
$ # and uppercase rest of the word characters
$ echo 'HeLLo:bYe gOoD:beTTEr' | sed -E 's/[a-z]+/\U\l&/Ig'
hELLO:bYE gOOD:bETTER

Global replace

As seen earlier, by default substitute command will replace only the first occurrence of search
pattern. Use g flag to replace all the matches.

50

$ # change only first ',' to '-'
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/'
1-2,3,4
a-b,c,d

$ # change all matches by adding 'g' flag
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/g'
1-2-3-4
a-b-c-d

Replace specific occurrences

A number provided as a flag will cause only the Nth match to be replaced.

$ # default substitution replaces first occurrence
$ echo 'foo:123:bar:baz' | sed 's/:/-/'
foo-123:bar:baz
$ echo 'foo:123:bar:baz' | sed -E 's/[^:]+/"&"/'
"foo":123:bar:baz

$ # replace second occurrence
$ echo 'foo:123:bar:baz' | sed 's/:/-/2'
foo:123-bar:baz
$ echo 'foo:123:bar:baz' | sed -E 's/[^:]+/"&"/2'
foo:"123":bar:baz

$ # replace third occurrence and so on
$ echo 'foo:123:bar:baz' | sed 's/:/-/3'
foo:123:bar-baz
$ echo 'foo:123:bar:baz' | sed -E 's/[^:]+/"&"/3'
foo:123:"bar":baz

Quantifiers can be used to replace Nth match from the end of line.

$ # replacing last occurrence
$ # can also use sed -E 's/:([^:]*)$/[]\1/'
$ echo '456:foo:123:bar:789:baz' | sed -E 's/(.*):/\1[]/'
456:foo:123:bar:789[]baz

$ # replacing last but one
$ echo '456:foo:123:bar:789:baz' | sed -E 's/(.*):(.*:)/\1[]\2/'
456:foo:123:bar[]789:baz

$ # generic version, where {N} refers to last but N
$ echo '456:foo:123:bar:789:baz' | sed -E 's/(.*):((.*:){2})/\1[]\2/'
456:foo:123[]bar:789:baz

A combination of number and g flag will replace all matches except the firstN-1 occurrences.
In other words, all matches starting from the Nth occurrence will be replaced.

51

$ # replace all except the first occurrence
$ echo '456:foo:123:bar:789:baz' | sed -E 's/:/[]/2g'
456:foo[]123[]bar[]789[]baz

$ # replace all except the first three occurrences
$ echo '456:foo:123:bar:789:baz' | sed -E 's/:/[]/4g'
456:foo:123:bar[]789[]baz

If multiple Nth occurrences are to be replaced, use descending order for readability.

$ # replace second and third occurrences
$ # note the numbers used
$ echo '456:foo:123:bar:789:baz' | sed 's/:/[]/2; s/:/[]/2'
456:foo[]123[]bar:789:baz

$ # better way is to use descending order
$ echo '456:foo:123:bar:789:baz' | sed 's/:/[]/3; s/:/[]/2'
456:foo[]123[]bar:789:baz

$ # replace second, third and fifth occurrences
$ echo '456:foo:123:bar:789:baz' | sed 's/:/[]/5; s/:/[]/3; s/:/[]/2'
456:foo[]123[]bar:789[]baz

Print flag

This flag was already introduced in Selective editing chapter.

$ # no output if no substitution
$ echo 'hi there. have a nice day' | sed -n 's/xyz/XYZ/p'

$ # modified line is displayed if substitution succeeds
$ echo 'hi there. have a nice day' | sed -n 's/\bh/H/pg'
Hi there. Have a nice day

Write to a file

The w flag allows to redirect contents to a specified filename instead of default stdout. This
flag applies to both filtering and substitution command. You might wonder why not simply use
shell redirection? As sed allows multiple commands, the w flag can be used selectively,
allow writes to multiple files and so on.

$ # space between w and filename is optional
$ # same as: sed -n 's/3/three/p' > 3.txt
$ seq 20 | sed -n 's/3/three/w 3.txt'
$ cat 3.txt
three
1three

$ # do not use -n if output should be displayed as well as written to file

52

$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/:/gw cols.txt'
1:2:3:4
a:b:c:d
$ cat cols.txt
1:2:3:4
a:b:c:d

For multiple output files, use -e for each file. Don’t use ; as that will be interpreted as
part of the filename!

$ seq 20 | sed -n -e 's/5/five/w 5.txt' -e 's/7/seven/w 7.txt'
$ cat 5.txt
five
1five
$ cat 7.txt
seven
1seven

There are two predefined filenames:

• /dev/stdout to write to stdout
• /dev/stderr to write to stderr

$ # in-place editing as well as display changes on stdout
$ sed -i 's/three/3/w /dev/stdout' 3.txt
3
13
$ cat 3.txt
3
13

Executing external commands

The e flag allows to use output of a shell command. The external command can be based on
the pattern space contents or provided as an argument. Quoting from the manual:

This command allows one to pipe input from a shell command into pattern space.
Without parameters, the e command executes the command that is found in pat-
tern space and replaces the pattern space with the output; a trailing newline is
suppressed.

If a parameter is specified, instead, the e command interprets it as a command and
sends its output to the output stream. The command can run across multiple lines,
all but the last ending with a back-slash.

In both cases, the results are undefined if the command to be executed contains a
NUL character.

First, examples with substitution command.

$ # sample input
$ printf 'Date:\nreplace this line\n'
Date:

53

replace this line

$ # replacing entire line with output of shell command
$ printf 'Date:\nreplace this line\n' | sed 's/^replace.*/date/e'
Date:
Wed Aug 14 11:39:39 IST 2019

If the p flag is used as well, order is important. Quoting from the manual:

when both the p and e options are specified, the relative ordering of the two pro-
duces very different results. In general, ep (evaluate then print) is what you want,
but operating the other way round can be useful for debugging. For this reason,
the current version of GNU sed interprets specially the presence of p options both
before and after e, printing the pattern space before and after evaluation, while
in general flags for the s command show their effect just once. This behavior, al-
though documented, might change in future versions.

$ printf 'Date:\nreplace this line\n' | sed -n 's/^replace.*/date/ep'
Wed Aug 14 11:42:48 IST 2019

$ printf 'Date:\nreplace this line\n' | sed -n 's/^replace.*/date/pe'
date

If only a portion of the line is replaced, complete modified line after substitution will get exe-
cuted as a shell command.

$ # after substitution, the command that gets executed is 'seq 5'
$ echo 'xyz 5' | sed 's/xyz/seq/e'
1
2
3
4
5

Next, examples with filtering alone.

$ # execute entire matching line as a shell command
$ # replaces the matching line with output of the command
$ printf 'date\ndate -I\n' | sed '/date/e'
Wed Aug 14 11:51:06 IST 2019
2019-08-14
$ printf 'date\ndate -I\n' | sed '2e'
date
2019-08-14

$ # command provided as argument, output is inserted before matching line
$ printf 'show\nexample\n' | sed '/am/e seq 2'
show
1
2
example

54

Multiline mode

The m (or M) flag will change the behavior of ˆ , $ and . metacharacters. This comes
into play only if there are multiple lines in the pattern space to operate with, for example when
the N command is used.

If m flag is used, the . metacharacter will not match the newline character.

$ # without m flag . will match newline character
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/H.*e/X/'
X Day

$ # with m flag . will not match across lines
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/H.*e/X/gm'
X
X Day

The ˆ and $ anchors will match every line’s start and end locations when m flag is used.

$ # without m flag line anchors will match once for whole string
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/^/* /g'
* Hi there
Have a Nice Day
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/$/./g'
Hi there
Have a Nice Day.

$ # with m flag line anchors will work for every line
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/^/* /gm'
* Hi there
* Have a Nice Day
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/$/./gm'
Hi there.
Have a Nice Day.

The \` and \' anchors will always match the start and end of entire string, irrespective
of single or multiline mode.

$ # similar to \A start of string anchor found in other implementations
$ printf 'Hi there\nHave a Nice Day\n' | sed 'N; s/\`/* /gm'
* Hi there
Have a Nice Day

$ # similar to \Z end of string anchor found in other implementations
$ # note the use of double quotes
$ # with single quotes, it will be: sed 'N; s/\'\''/./gm'
$ printf 'Hi there\nHave a Nice Day\n' | sed "N; s/\'/./gm"
Hi there
Have a Nice Day.

Usually, regular expression implementations have separate flags to control the behavior of .
metacharacter and line anchors. Having a single flag restricts flexibility. As an example, you

55

cannot make . to match across lines if m flag is used in sed . You’ll have to resort to
some creative alternatives in such cases as shown below.

$ # \w|\W or .|\n can also be used
$ # recall that sed doesn't allow character set sequences inside []
$ printf 'Hi there\nHave a Nice Day\n' | sed -E 'N; s/H(\s|\S)*e/X/m'
X Day

$ # this one doesn't use alternation
$ printf 'Hi there\nHave a Nice Day\n' | sed -E 'N; s/H(.*\n.*)*e/X/m'
X Day

Cheatsheet and summary

Note Description

flag changes default behavior of REGEXP
I match case insensitively for REGEXP address
i or I match case insensitively for substitution command
\E indicates end of case conversion in replacement section
\l convert next character to lowercase
\u convert next character to uppercase
\L convert following characters to lowercase, unless \U or \E is used
\U convert following characters to uppercase, unless \L or \E is used
g replace all occurrences instead of just the first match
N a number will cause only the Nth match to be replaced
p prints line only if substitution succeeds (assuming -n is active)
w filename write contents of pattern space to given filename

whenever the REGEXP address matches or substitution succeeds
e executes contents of pattern space as shell command

and replaces the pattern space with command output
if argument is passed, executes that external command
and inserts output before matching lines

m or M multiline mode flag
. will not match the newline character
ˆ and $ will match every line’s start and end locations

\` always match the start of string irrespective of m flag
\' always match the end of string irrespective of m flag

This chapter showed how flags can be used for extra functionality. Some of the flags interact
with the shell as well. In the next chapter, you’ll learn how to incorporate shell variables and
command outputs to dynamically construct a sed command.

Exercises

a) For the input file para.txt , remove all groups of lines marked with a line beginning with
start and a line ending with end . Match both these markers case insensitively.

56

$ cat para.txt
good start
Start working on that
project you always wanted
to, do not let it end
hi there
start and try to
finish the End
bye

$ sed ##### add your solution here
good start
hi there
bye

b) The given sample input below starts with one or more # characters followed by one or
more whitespace characters and then some words. Convert such strings to corresponding
output as shown below.

$ echo '# Regular Expressions' | sed ##### add your solution here
regular-expressions
$ echo '## Compiling regular expressions' | sed ##### add your solution here
compiling-regular-expressions

c) Using the input file para.txt , create a file named five.txt with all lines that contain
a whole word of length 5 and a file named six.txt with all lines that contain a whole word
of length 6.
$ sed ##### add your solution here

$ cat five.txt
good start
Start working on that
hi there
start and try to
$ cat six.txt
project you always wanted
finish the End

d) Given sample strings have fields separated by , where field values can be empty as well.
Use sed to replace the third field with 42 .

$ echo 'lion,,ant,road,neon' | sed ##### add your solution here
lion,,42,road,neon

$ echo ',,,' | sed ##### add your solution here
,,42,

e) Replace all occurrences of e with 3 except the first two matches.

$ echo 'asset sets tests site' | sed ##### add your solution here
asset sets t3sts sit3

57

$ echo 'sample item teem eel' | sed ##### add your solution here
sample item t33m 33l

f) For the input file addr.txt , replace all input lines with number of characters in those lines.
wc -L is one of the ways to get length of a line as shown below.

$ # note that newline character isn't counted, which is preferable here
$ echo "Hello World" | wc -L
11

$ sed ##### add your solution here
11
11
17
14
5
13

g) For the input file para.txt , assume that it’ll always have lines in multiples of 4. Use
sed commands such that there are 4 lines at a time in the pattern space. Then, delete from
start till end provided start is matched only at the start of a line. Also, match these
two keywords case insensitively.

$ sed ##### add your solution here
good start

hi there

bye

58

Shell substitutions

So far, the sed commands have been constructed statically. All the details were known. For
example, which line numbers to act upon, the search REGEXP, the replacement string and
so on. When it comes to automation and scripting, you’d often need to construct commands
dynamically based on user input, file contents, etc. And sometimes, output of a shell command
is needed as part of the replacement string. This chapter will discuss how to incorporate shell
variables and command output to compose a sed command dynamically. As mentioned
before, this book assumes bash as the shell being used.

As an example, see my repo ch: command help for a practical shell script,
where commands are constructed dynamically.

Variable substitution

The characters you type on the command line are first interpreted by the shell before it can
be executed. Wildcards are expanded, pipes and redirections are set up, double quotes are
interpolated and so on. For some use cases, it is simply easier to use double quotes instead of
single quotes for the script passed to sed command. That way, shell variables get substituted
for their values.

See wooledge: Quotes and unix.stackexchange: Why does my shell script
choke on whitespace or other special characters? for details about various quoting
mechanisms in bash and when quoting is needed.

$ start=5; step=1
$ sed -n "${start},+${step}p" programming_quotes.txt
Some people, when confronted with a problem, think - I know, I will
use regular expressions. Now they have two problems by Jamie Zawinski

$ step=4
$ sed -n "${start},+${step}p" programming_quotes.txt
Some people, when confronted with a problem, think - I know, I will
use regular expressions. Now they have two problems by Jamie Zawinski

A language that does not affect the way you think about programming,
is not worth knowing by Alan Perlis

But, if the shell variables can contain any generic string instead of just numbers, it is strongly
recommended to use double quotes only where it is needed. Otherwise, normal characters part
of sed command may get interpolated because of double quotes. bash allows unquoted,
single quoted and double quoted strings to be concatenated by simply placing them next to
each other.

$ # ! is special within double quotes
$ # !d got expanded to 'date -Is' from my history and hence the error
$ word='at'
$ printf 'sea\neat\ndrop\n' | sed "/${word}/!d"
printf 'sea\neat\ndrop\n' | sed "/${word}/date -Is"
sed: -e expression #1, char 6: extra characters after command

59

https://github.com/learnbyexample/command_help/blob/master/ch
https://mywiki.wooledge.org/Quotes
https://unix.stackexchange.com/questions/131766/why-does-my-shell-script-choke-on-whitespace-or-other-special-characters
https://unix.stackexchange.com/questions/131766/why-does-my-shell-script-choke-on-whitespace-or-other-special-characters

$ # use double quotes only for variable substitution
$ # and single quotes for everything else
$ # the command is concatenation of '/' and "${word}" and '/!d'
$ printf 'sea\neat\ndrop\n' | sed '/'"${word}"'/!d'
eat

After you’ve properly separated single and double quoted portions, you need to take care of
few more things to robustly construct a dynamic command. First, you’ll have to ensure that
the shell variable is properly preprocessed to avoid conflict with whichever delimiter is being
used for search or substitution operations.

See wooledge: Parameter Expansion for details about the bash feature used
in the example below.

$ # error because '/' inside HOME value conflicts with '/' as delimiter
$ echo 'home path is:' | sed 's/$/ '"${HOME}"'/'
sed: -e expression #1, char 7: unknown option to `s'
$ # using a different delimiter will help in this particular case
$ echo 'home path is:' | sed 's|$| '"${HOME}"'|'
home path is: /home/learnbyexample

$ # but you may not have the luxury of choosing a delimiter
$ # in such cases, escape all delimiter characters before variable substitution
$ home=${HOME//\//\\/}
$ echo 'home path is:' | sed 's/$/ '"${home}"'/'
home path is: /home/learnbyexample

If the variable value is obtained from an external source, such as user input,
then you need to worry about security too. See unix.stackexchange: security con-
sideration when using shell substitution for more details.

Escaping metacharacters

Next, you have to properly escape all the metacharacters depending upon whether the variable
is used as search or replacement string. This is needed only if the content of the variable has
to be treated literally. Here’s an example to illustrate the issue with one metacharacter.

$ c='&'
$ # & will backreference entire matched portion
$ echo 'a and b and c' | sed 's/and/'"${c}"'/g'
a [and] b [and] c

$ # escape all occurrences of & to insert it literally
$ c1=${c//&/\\&}
$ echo 'a and b and c' | sed 's/and/'"${c1}"'/g'
a [&] b [&] c

Typically, you’d need to escape \ , & and the delimiter for variables used in the replacement
section. For the search section, the characters to be escaped will depend upon whether you

60

https://mywiki.wooledge.org/BashGuide/Parameters#Parameter_Expansion
https://unix.stackexchange.com/questions/297122/replace-the-first-occurence-of-a-pattern-in-a-file-that-may-contain-a-slash/297128#297128
https://unix.stackexchange.com/questions/297122/replace-the-first-occurence-of-a-pattern-in-a-file-that-may-contain-a-slash/297128#297128

are using BRE or ERE.

$ # replacement string
$ r='a/b&c\d'
$ r=$(printf '%s' "$r" | sed 's#[\&/]#\\&#g')

$ # ERE version for search string
$ s='{[(\ta^b/d).*+?^$|]}'
$ s=$(printf '%s' "$s" | sed 's#[{[()^$*?+.\|/]#\\&#g')
$ echo 'f*{[(\ta^b/d).*+?^$|]} - 3' | sed -E 's/'"$s"'/'"$r"'/g'
f*a/b&c\d - 3

$ # BRE version for search string
$ s='{[(\ta^b/d).*+?^$|]}'
$ s=$(printf '%s' "$s" | sed 's#[[^$*.\/]#\\&#g')
$ echo 'f*{[(\ta^b/d).*+?^$|]} - 3' | sed 's/'"$s"'/'"$r"'/g'
f*a/b&c\d - 3

For a more detailed analysis on escaping the metacharacters, refer to these wonderful Q&A
threads.

• unix.stackexchange: How to ensure that string interpolated into sed substitution escapes
all metacharacters — also discusses how to escape literal newlines in replacement string

• stackoverflow: Is it possible to escape regex metacharacters reliably with sed
• unix.stackexchange: What characters do I need to escape when using sed in a script?

Command substitution

This section will show examples of using output of shell command as part of sed command.
And all the precautions seen in previous sections apply here too.

See also wooledge: Why is $() preferred over backticks?

$ # note that the newline character of command output gets stripped
$ echo 'today is date.' | sed 's/date/'"$(date -I)"'/'
today is 2019-08-23.

$ # need to change delimiter where possible
$ printf 'f1.txt\nf2.txt\n' | sed 's|^|'"$(pwd)"'/|'
/home/learnbyexample/f1.txt
/home/learnbyexample/f2.txt
$ # or preprocess if delimiter cannot be changed for other reasons
$ p=$(pwd | sed 's|/|\\/|g')
$ printf 'f1.txt\nf2.txt\n' | sed 's/^/'"${p}"'\//'
/home/learnbyexample/f1.txt
/home/learnbyexample/f2.txt

Multiline command output cannot be substituted in this manner, as substitute
command doesn’t allow literal newlines in replacement section unless escaped.

61

https://unix.stackexchange.com/questions/129059/how-to-ensure-that-string-interpolated-into-sed-substitution-escapes-all-metac
https://unix.stackexchange.com/questions/129059/how-to-ensure-that-string-interpolated-into-sed-substitution-escapes-all-metac
https://stackoverflow.com/questions/29613304/is-it-possible-to-escape-regex-metacharacters-reliably-with-sed
https://unix.stackexchange.com/questions/32907/what-characters-do-i-need-to-escape-when-using-sed-in-a-sh-script
https://mywiki.wooledge.org/BashFAQ/082

$ printf 'a\n[x]\nb\n' | sed 's/x/'"$(seq 3)"'/'
sed: -e expression #1, char 5: unterminated `s' command
$ # prefix literal newlines with \ except the last newline
$ printf 'a\n[x]\nb\n' | sed 's/x/'"$(seq 3 | sed '$!s/$/\\/')"'/'
a
[1
2
3]
b

Cheatsheet and summary

Note Description

sed -n "${start},+${step}p" dynamically construct sed command
within double quotes, $, \ , ! and ` are special
in above example, start and step are shell variables
their values gets substituted before sed is executed

sed "/${word}/!d" entire command in double quotes is risky
sed '/'"${word}"'/!d' use double quotes only where needed

and variable contents have to be preprocessed to prevent
clashing with sed metacharacters and security issue
if you don’t control the variable contents

sed 's#[\&/]#\\&#g' escape metacharacters for replacement section
sed '$!s/$/\\/' escape literal newlines for replacement section
sed 's#[{[()ˆ$*?+.\|/]#\\&#g' escape metacharacters for search section, ERE
sed 's#[[ˆ$*.\/]#\\&#g' escape metacharacters for search section, BRE
sed 's/date/'"$(date -I)"'/' example for command substitution

command output’s final newline character gets stripped
other literal newlines, if any, have to be escaped

This chapter covered some of the ways to construct a sed command dynamically. Like most
things in software programming, 90% of the cases are relatively easier to accomplish. But
the other 10% could get significantly complicated. Dealing with the clash between shell and
sed metacharacters is a mess and I’d even suggest looking for alternatives such as perl
to reduce the complexity. The next chapter will cover some more command line options.

Exercises

a) Replace #expr# with value of usr_ip shell variable. Assume that this variable can only
contain the metacharacters as shown in the sample below.

$ usr_ip='c = (a/b) && (x-5)'
$ mod_ip=$(echo "$usr_ip" | sed ##### add your solution here)
$ echo 'Expression: #expr#' | sed ##### add your solution here
Expression: c = (a/b) && (x-5)

62

b) Repeat previous exercise, but this time with command substitution instead of using tempo-
rary variable.

$ usr_ip='c = (a/b/y) && (x-5)'
$ echo 'Expression: #expr#' | sed ##### add your solution here
Expression: c = (a/b/y) && (x-5)

63

z, s and f command line options

This chapter covers the -z , -s and -f command line options. These come in handy for
specific use cases. For example, the -z option helps to process input separated by ASCII
NUL character and the -f option allows you to pass sed commands from a file.

NUL separated lines

The -z option will cause sed to separate lines based on the ASCII NUL character instead
of the newline character. Just like normal newline based processing, the NUL character is
removed (if present) from the input line and added back accordingly when the processed line
is printed.

NUL separation is very useful to process filenames as newline is a valid
character for filenames but NUL character isn’t. For example, grep -Z and
find -print0 will print NUL separated filenames whereas grep -z and
xargs -0 will accept NUL separated input.

$ printf 'earn xerox\0at\nmare\npart\0learn eye\n' | sed -nz '/are/p'
at
mare
part

$ # \0 at end of output depends on input having \0 character
$ printf 'earn xerox\0at\nmare\npart\0learn eye\n' | sed -nz '/are/p' | od -c
0000000 a t \n m a r e \n p a r t \0
0000015
$ printf 'earn xerox\0at\nmare\npart\0learn eye\n' | sed -nz '/eye/p' | od -c
0000000 l e a r n e y e \n
0000012

If input doesn’t have NUL characters, then -z option is handy to process the entire input as a
single string. This is effective only for files small enough to fit your available machine memory.
It would also depend on the regular expression, as some patterns have exponential relationship
with respect to data size. As input doesn’t have NUL character, output also wouldn’t have NUL
character, unlike GNU grep which always adds the line separator to the output.

$ # adds ; to previous line if current line starts with c
$ printf 'cater\ndog\ncoat\ncutter\nmat\n' | sed -z 's/\nc/;&/g'
cater
dog;
coat;
cutter
mat

64

Separate files

The -s option will cause sed to treat multiple input files separately instead of treating them
as single concatenated input. This helps if you need line number addressing to be effective for
each input file.

If -i option is being used, -s is also implied.

$ # without -s, there is only one first line for all files combined
$ # F command inserts filename of current file at the given address
$ sed '1F' cols.txt 5.txt
cols.txt
1:2:3:4
a:b:c:d
five
1five

$ # with -s, each file has its own address
$ # this is like 'cat' command but also prints filename as header
$ sed -s '1F' cols.txt 5.txt
cols.txt
1:2:3:4
a:b:c:d
5.txt
five
1five

File as source of sed commands

If your sed commands does not easily fit the command line, you have the option of putting
the commands in a file and use -f option to specify that file as the source of commands to
execute. This method also provides benefits like:

• literal newline can be used to separate the commands
• single quotes can be freely used as it will no longer clash as a shell metacharacter
• comments can be specified after the # character

∘ See also sed manual: Often-Used Commands for details about using comments

Consider the following input file and a sed script written into a plain text file.

$ cat sample.txt
Hi there
cats and dogs running around
Have a nice day

$ cat word_mapping.sed
word mappings
s/cat/Cat/g
s/dog/Dog/g
s/Hi/Hey/g

65

https://www.gnu.org/software/sed/manual/sed.html#Common-Commands

appending another line
/there|running/ s/$/\n----------/

The two lines starting with # character are comment lines. Comments can also be added
at end of a command line if required, just like other programming languages. Use the -f
option to pass the contents of the file as sed commands. Any other command line option like
-n , -z , -E , etc have to mentioned along with sed invocation, just like you’ve done so
far.

$ # the first 3 substitutions will work
$ # but not the last one, as | is not a metacharacter with BRE
$ sed -f word_mapping.sed sample.txt
Hey there
Cats and Dogs running around
Have a nice day

$ # | now works as ERE is enabled using -E option
$ sed -E -f word_mapping.sed sample.txt
Hey there

Cats and Dogs running around

Have a nice day

Similar to making an executable bash or perl or python script, you can add a shebang
(see wikipedia: shebang for details) line to a sed script file.

$ # to get full path of the command
$ type sed
sed is /usr/local/bin/sed

$ # sed script with shebang, note the use of -f after command path
$ cat executable.sed
#!/usr/local/bin/sed -f
s/cats\|dogs/'&'/g

$ # add execute permission to the script
$ chmod +x executable.sed

$ # executing the script
$./executable.sed sample.txt
Hi there
'cats' and 'dogs' running around
Have a nice day

Adding any other command line option like -n , -z , -E , etc depends on a
lot of factors. See stackoverflow: usage of options along with shebang for details.

See also sed manual: Some Sample Scripts and Sokoban game written in sed

66

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://stackoverflow.com/questions/4303128/how-to-use-multiple-arguments-with-a-shebang-i-e
https://www.gnu.org/software/sed/manual/sed.html#Examples
https://aurelio.net/projects/sedsokoban/

Cheatsheet and summary

Note Description

-z change line separator from newline to ASCII NUL character
grep -Z and find -print0 are examples for NUL separated input
-z also useful to process entire input as single string if it doesn’t
contain NUL characters, assuming small enough input file to fit memory

-s separate addressing for multiple file inputs
-s is implied if -i is being used

-f supply commands from a file
literal newline can be used to separate the commands
single quotes can be freely used
comments can be specified after the # character

F command to insert current filename at the given address

This chapter covered three command line options that come in handy for specific situations.
You also saw a few examples of sed being used as part of a solution with other commands
in a pipeline or a shell script. In the next chapter, you’ll learn three commands that are also
specialized for particular use cases.

Exercises

a) Replace any character other than word characters and . character with _ character
for the sample filenames shown below.

$ mkdir test_dir && cd $_
$ touch 'file with spaces.txt' $'weird$ch\nars.txt' '!f@oo.txt'
$ # > at start of line indicates continuation of multiline shell command
$ for file in *; do
> new_name=$(printf '%s' "$file" | sed ##### add your solution here)
> mv "$file" "$new_name"
> done

$ ls
file_with_spaces.txt _f_oo.txt weird_ch_ars.txt
$ cd .. && rm -r test_dir

b) Print only the third line, if any, from these input files: addr.txt , para.txt and
copyright.txt

$ sed ##### add your solution here
This game is good
project you always wanted
bla bla bla

c) For the input file hex.txt , use content from replace.txt to perform search and replace
operations. Each line in replace.txt starts with the search term, followed by a space
and then followed by the replace term. Assume that these terms do not contain any sed

67

metacharacters.

$ cat hex.txt
start address: 0xA0, func1 address: 0xA0
end address: 0xFF, func2 address: 0xB0
$ cat replace.txt
0xA0 0x5000
0xB0 0x6000
0xFF 0x7000

$ sed -f <(sed ##### add your solution here) hex.txt
start address: 0x5000, func1 address: 0x5000
end address: 0x7000, func2 address: 0x6000

68

append, change, insert

These three commands come in handy for specific operations as suggested by their names.
The substitute command could handle most of the features offered by these commands. But
where applicable, these commands would be easier to use.

Unless otherwise specified, rules mentioned in following sections will apply
similarly for all the three commands.

Basic usage

Just like the substitute command, first letter of these three names represents the command in
a sed script.

• a appends given string after end of line of each of the matching address
• c changes the entire matching address contents to the given string
• i inserts given string before start of line of each of the matching address

The string value for these commands is supplied after the command letter. Any whitespace
between the letter and the string value is ignored. First up, some examples with single address
as the qualifier.

$ # same as: sed '2 s/$/\nhello/'
$ seq 3 | sed '2a hello'
1
2
hello
3

$ # same as: sed '/[24]/ s/.*/hello/'
$ seq 5 | sed '/[24]/c hello'
1
hello
3
hello
5

$ # same as: sed '2 s/^/hello\n/'
$ seq 3 | sed '2i hello'
1
hello
2
3

Next, examples with address ranges.

$ # append and insert will apply for each matching line of address range
$ seq 5 | sed '2,4i hi there!'
1
hi there!
2

69

hi there!
3
hi there!
4
5

$ # change will replace entire matching range with given string
$ seq 5 | sed '2,4c hi there!'
1
hi there!
5
$ # to change every matching line, use substitute command
$ seq 5 | sed '2,4 s/.*/hi there!/'
1
hi there!
hi there!
hi there!
5

Escape sequences

Similar to replacement strings in substitute command, you can use escape sequences like \t
, \n , etc and ASCII value formats like \xNN .

$ seq 3 | sed '2c rat\tdog\nwolf'
1
rat dog
wolf
3

$ seq 3 | sed '2a it\x27s sunny today'
1
2
it's sunny today
3

As mentioned before, any whitespace between the command and the string is ignored. You
can use \ after the command letter to prevent that.

$ seq 3 | sed '2c hello'
1
hello
3

$ seq 3 | sed '2c\ hello'
1

hello
3

As \ has another meaning when used immediately after command letter, use an additional

70

\ if there is a normal escape sequence at start of the string.

$ seq 3 | sed '2c\nhi'
1
nhi
3

$ seq 3 | sed '2c\\nhi'
1

hi
3

See also stackoverflow: add newline character if last line of input doesn’t have
one

Multiple commands

All the three commands will treat everything after the command letter as the string argument.
Thus, you cannot use ; as command separator or # to start a comment. Even command
grouping with {} will fail unless you use -e option or literal newline to separate the closing
} .

$ # 'hi ; 3a bye' will treated as single string argument
$ seq 4 | sed '2c hi ; 3a bye'
1
hi ; 3a bye
3
4
$ # } gets treated as part of argument for append command, hence the error
$ seq 3 | sed '2{s/^/*/; a hi}'
sed: -e expression #1, char 0: unmatched `{'

$ # use -e or literal newline to separate the commands
$ seq 4 | sed -e '2c hi' -e '3a bye'
1
hi
3
bye
4
$ seq 3 | sed '2{c hi
> }'
1
hi
3

71

https://stackoverflow.com/questions/41343062/what-does-this-mean-in-linux-sed-a-a-txt
https://stackoverflow.com/questions/41343062/what-does-this-mean-in-linux-sed-a-a-txt

Shell substitution

This section is included in this chapter to showcase more examples for shell substitutions and
to warn about the potential pitfalls.

$ # variable substitution
$ text='good\tone\nfood\tpun'
$ seq 13 15 | sed '2c'"$text"
13
good one
food pun
15

$ # command substitution
$ seq 13 15 | sed '3i'"$(date +%A)"
13
14
Wednesday
15

Literal newline in the substituted string may cause an error depending upon content.

$ seq 13 15 | sed '3i'"$(printf 'hi\n123')"
sed: -e expression #1, char 8: missing command

$ # same as: sed -e '3i hi' -e 's/5/five/'
$ seq 13 15 | sed '3i'"$(printf 'hi\ns/5/five/')"
13
14
hi
1five

Cheatsheet and summary

Note Description

a appends given string after end of line of each of the matching address
c changes the entire matching address contents to the given string
i inserts given string before start of line of each of the matching address

string value for these commands is supplied after the command letter
escape sequences like \t , \n , \xNN , etc can be used in the string value
any whitespace between command letter and the string value is ignored
unless \ is used after command letter
\ after command letter is also needed if escape sequence is the first character
-e or literal newline is needed to separate any further commands

This chapter covered three more sed commands that work similarly to substitution command
for specific use cases. The string argument to these commands allow escape sequences to be
used. If you do not wish the text to be interpreted or if you wish to provide text from a file,

72

then use the commands covered in next chapter, which allows you to add text literally.

Exercises

a) For the input file addr.txt , print only the third line and surround it with -----

$ sed ##### add your solution here

This game is good

b) For the input file addr.txt , replace all lines starting from a line containing you till end
of file with content as shown below.

$ sed ##### add your solution here
Hello World

Have a nice day

c) Replace every even numbered line with ---

$ seq 0 5 | sed ##### add your solution here
0

2

4

73

Adding content from file

The previous chapter discussed how to use a , c and i commands to append, change
or insert the given string for matching address. Any \ in the string argument is treated
according to sed escape sequence rules and it cannot contain literal newline character. The
r and R commands allow to use file contents as the source string which is always treated
literally and can contain newline characters. Thus, these two commands provide a robust way
to add multiline text literally.

However, r and R provide only append functionality for matching address. Other sed
features will be used to show examples for c and i variations.

r for entire file

The r command accepts a filename as argument and when the address is satisfied, entire
contents of the given file is added after the matching line.

If the given filename doesn’t exist, sed will silently ignore it and proceed
as if the file was empty. Exit status will be 0 unless something else goes wrong
with the sed command used.

$ cat ip.txt
* sky
* apple

$ cat fav_colors.txt
deep red
yellow
reddish
brown

$ # space between r and filename is optional
$ sed '/red/r ip.txt' fav_colors.txt
deep red

* sky
* apple

yellow
reddish

* sky
* apple

brown

To use command output as file source, use /dev/stdin as filename.

$ text='good\tone\nfood\tpun'
$ echo "$text" | sed '1r /dev/stdin' ip.txt

* sky
good\tone\nfood\tpun

* apple

$ # example for adding multiline command output

74

$ seq 2 | sed '2r /dev/stdin' ip.txt
* sky
* apple

1
2

$ # note that newline won't be added to file contents being read
$ printf '123' | sed '1r /dev/stdin' ip.txt

* sky
123 * apple

Here’s some examples to emulate c command functionality with r command. Similar to
a , c and i commands, everything after r and R commands is treated as filename.
So, use -e or literal newlines when multiple commands are needed.

See also unix.stackexchange: Various ways to replace line M in file1 with line
N in file2

$ # replacing only the 2nd line
$ # order is important, first 'r' and then 'd'
$ # note the use of command grouping to avoid repeating the address
$ items=' * blue\n * green\n'
$ printf '%b' "$items" | sed -e '2 {r /dev/stdin' -e 'd}' ip.txt

* sky
* blue
* green

$ # replacing range of lines
$ # using grouping here will add file contents for each matching line
$ # so, use 'r' only for second address
$ # and then delete the range, // here avoids duplicating second address
$ sed -e '/^red/r ip.txt' -e '/yellow/,//d' fav_colors.txt
deep red

* sky
* apple

brown

Quoting from manual:

The empty regular expression ‘//’ repeats the last regular expression match (the
same holds if the empty regular expression is passed to the s command). Note
that modifiers to regular expressions are evaluated when the regular expression
is compiled, thus it is invalid to specify them together with the empty regular ex-
pression

Emulating i command functionality with r command requires advanced usage of sed
and well beyond the scope of this book. See unix.stackexchange: insert file contents before
matching line for examples. Instead of r command, the next section will show how to use
the e flag seen earlier for this purpose.

75

https://unix.stackexchange.com/questions/396445/replace-line-m-in-file1-with-line-n-in-file2
https://unix.stackexchange.com/questions/396445/replace-line-m-in-file1-with-line-n-in-file2
https://unix.stackexchange.com/questions/32908/how-to-insert-the-content-of-a-file-into-another-file-before-a-pattern-marker
https://unix.stackexchange.com/questions/32908/how-to-insert-the-content-of-a-file-into-another-file-before-a-pattern-marker

Using e and cat command

The manual has this handy note for the e flag:

Note that, unlike the r command, the output of the command will be printed imme-
diately; the r command instead delays the output to the end of the current cycle.

This makes the e flag the easiest way to insert file contents before thematching lines. Similar
to r command, the output of external command is inserted literally. But one difference from
r command is that if the filename passed to the external cat command doesn’t exist, then
you will see its error message inserted.

$ sed '/red/e cat ip.txt' fav_colors.txt
* sky
* apple

deep red
yellow

* sky
* apple

reddish
brown

$ text='good\tone\nfood\tpun'
$ echo "$text" | sed '1e cat /dev/stdin' ip.txt
good\tone\nfood\tpun

* sky
* apple

R for line by line

The R command is very similar to r with respect to most of the rules seen in previous
section. But instead of reading entire file contents, R will read one line at a time from the
source file when the given address matches. If entire file has already been read and another
address matches, sed will proceed as if the line was empty.

$ sed '/red/R ip.txt' fav_colors.txt
deep red

* sky
yellow
reddish

* apple
brown

$ # interleave contents of two files
$ seq 4 | sed 'R /dev/stdin' fav_colors.txt
deep red
1
yellow
2
reddish

76

3
brown
4

See also stackoverflow: Replace first few lines with first few lines from other
file

Cheatsheet and summary

Note Description

r filename entire contents of file is added after each matching line
e cat filename entire contents of file is added before each matching line
R filename add one line at a time from file after each matching line

space between command and filename is optional
use /dev/stdin as filename to use stdin as file source
file contents are added literally, no escape sequence interpretation

This chapter covered two powerful and robust solutions for adding text literally from a file or
command output. These are particularly useful for templating solutions where a line contain-
ing a keyword gets replaced with text from elsewhere. In the next chapter, you’ll learn how
to implement control structures using branch commands.

Exercises

a) Replace third to fifth lines of input file addr.txt with second to fourth lines from file
para.txt

$ sed ##### add your solution here
Hello World
How are you
Start working on that
project you always wanted
to, do not let it end
You are funny

b) Add one line from hex.txt after every two lines of copyright.txt

$ sed ##### add your solution here
bla bla 2015 bla
blah 2018 blah
start address: 0xA0, func1 address: 0xA0
bla bla bla
copyright: 2019
end address: 0xFF, func2 address: 0xB0

77

https://stackoverflow.com/questions/48382204/replace-first-few-lines-with-first-few-lines-from-other-file
https://stackoverflow.com/questions/48382204/replace-first-few-lines-with-first-few-lines-from-other-file

Control structures

sed supports two types of branching commands that helps to construct control structures.
These commands (and other advanced features not discussed in this book) allow you to emulate
a wide range of features that are common in programming languages. This chapter will show
basic examples and you’ll find some more use cases in a later chapter.

See also catonmat: A proof that Unix utility sed is Turing complete

Branch commands

Command Description

b label unconditionally branch to specified label
b skip rest of the commands and start next cycle
t label branch to specified label on successful substitution
t on successful substitution, skip rest of the commands and start next cycle
T label branch to specified label if substitution fails
T if substitution fails, skip rest of the commands and start next cycle

A label is specified by prefixing a command with :label where label is the name given
to be referenced elsewhere with branching commands. Note that for t command, any
successful substitution since the last input line was read or a conditional branch will count.
So, you could have few failed substitutions and a single successful substitution in any order
and the branch will be taken. Similarly, T command will branch only if there has been no
successful substitution since the last input line was read or a conditional branch.

if-then-else

The branching commands can be used to construct control structures like if-then-else. For
example, consider an input file containing numbers in a single column and the task required
is to change positive numbers to negative and vice versa. If the line starts with - character,
you need to delete it and process next input line. Else, you need to insert - at start of line
to convert positive numbers to negative. Both b and t commands can be used here as
shown below.

$ cat nums.txt
3.14
-20000
-51
4567

$ # empty REGEXP section will reuse last REGEXP match, in this case /^-/
$ # also note the use of ; after {} command grouping
$ # 2nd substitute command will execute only if line doesn't start with -
$ sed '/^-/{s///; b}; s/^/-/' nums.txt
-3.14

78

https://catonmat.net/proof-that-sed-is-turing-complete

20000
51
-4567

$ # t command will come into play if the 1st substitute command succeeds
$ # and thus skip the 2nd substitute command
$ sed '/^-/ s///; t; s/^/-/' nums.txt
-3.14
20000
51
-4567

The T command will branch only if there has been no successful substitution since the last
input was read or conditional branch. Rephrased it another way, the commands after the T
branch will be executed only if there has been at least one successful substitution.

$ # 2nd substitution will work only if 1st one succeeds
$ # same as: sed '/o/{s//-/g; s/d/*/g}'
$ printf 'good\nbad\n' | sed 's/o/-/g; T; s/d/*/g'
g--*
bad

$ # append will work if any of the substitution succeeds
$ printf 'good\nbad\nneed\n' | sed 's/o/-/g; s/a/%/g; T; a ----'
g--d

b%d

need

loop

Without labels, branching commands will skip rest of the commands and then start processing
the next line from input. By marking a command location with a label, you can branch to that
particular location when required. In this case, you’ll still be processing the current pattern
space.

The below example replaces all consecutive digit characters from start of line with * char-
acter. :a marks the substitute command with label named a and ta would branch to
label a if the substitute command succeeds. Effectively, you get a looping mechanism to
replace the current line as long as the substitute condition is satisfied.

$ # same as: perl -pe 's/\G\d/*/g'
$ # first, * is matched 0 times followed by the digit 1
$ # next, * is matched 1 times followed by the digit 2
$ # then, * is matched 2 times followed by the digit 3
$ # and so on until the space character breaks the loop
$ echo '12345 hello42' | sed -E ':a s/^(**)[0-9]/\1*/; ta'
***** hello42

79

$ # here, the x character breaks the loop
$ echo '123x45 hello42' | sed -E ':a s/^(**)[0-9]/\1*/; ta'
***x45 hello42
$ # no change as the input didn't start with a number
$ echo 'hi 12345 hello42' | sed -E ':a s/^(**)[0-9]/\1*/; ta'
hi 12345 hello42

For debugging purposes, which also helps beginners to understand this command better, un-
roll the loop and test the command. For the above example, try sed -E 's/ˆ(**)[0-9]/\1*/'
followed by sed -E 's/ˆ(**)[0-9]/\1*/; s//\1*/' and so on.

Space between : and label name is optional. Similarly, space between branch
command and target label is optional.

Here’s an example for field processing. awk and perl are better suited for field processing,
but in some cases sed might be convenient because rest of the text processing is already in
sed and so on.

$ # replace space with underscore only in 2nd column
$ # [^,]*, captures first column delimited by comma character
$ # [^ ,]* matches non-space and non-comma characters
$ # end of line or another comma will break the loop
$ echo 'he be me,1 2 3 4,nice slice' | sed -E ':b s/^([^,]*,[^ ,]*) /\1_/; tb'
he be me,1_2_3_4,nice slice

The looping construct also helps to emulate certain advanced regular expression features not
available in sed like lookarounds (see stackoverflow: regex faq).

$ # replace empty fields with NA
$ # simple replacement won't work for ,,, case
$ echo '1,,,two,,3' | sed 's/,,/,NA,/g'
1,NA,,two,NA,3
$ # looping to the rescue
$ echo '1,,,two,,3' | sed -E ':c s/,,/,NA,/g; tc'
1,NA,NA,two,NA,3

The below example has similar solution to previous example, but the problem statement is
different and cannot be solved using lookarounds. Here, the act of performing substitution
results in an output string that will again match the search pattern.

$ # deleting 'fin' results in 'cofing' which can again match 'fin'
$ echo 'coffining' | sed 's/fin//'
cofing
$ # add more s commands if number of times to substitute is known
$ echo 'coffining' | sed 's/fin//; s///'
cog
$ # use loop when it is unknown
$ echo 'coffining' | sed ':d s/fin//; td'
cog

80

https://stackoverflow.com/questions/22937618/reference-what-does-this-regex-mean

Cheatsheet and summary

Note Description

b label unconditionally branch to specified label
b skip rest of the commands and start next cycle
t label branch to specified label on successful substitution
t on successful substitution, skip rest of the commands and start next cycle
T label branch to specified label if substitution fails
T if substitution fails, skip rest of the commands and start next cycle

This chapter introduced branching commands that can be used to emulate programming fea-
tures like if-else and loops. These are handy for certain cases, especially when combined with
filtering features of sed . Speaking of filtering features, the next chapter will focus entirely
on using address range for various use cases.

Exercises

a)Using the input file para.txt , create a file named markers.txt with all lines that contain
start or end (matched case insensitively) and a file named rest.txt with rest of the
lines.

$ sed ##### add your solution here
$ cat markers.txt
good start
Start working on that
to, do not let it end
start and try to
finish the End
$ cat rest.txt
project you always wanted
hi there
bye

b) For the input file addr.txt :

• if line contains e , surround all consecutive repeated characters with {} as well as
uppercase those characters

• if line doesn’t contain e but contains u , surround all uppercase letters in that line
with []

$ # note that H in second line and Y in last line isn't modified
$ sed ##### add your solution here
He{LL}o World
How are you
This game is g{OO}d
[T]oday is sunny
12345
You are fu{NN}y

81

c) The given sample strings below has multiple fields separated by a space. The first field has
numbers separated by - character. Surround these numbers in first field with []

$ echo '123-87-593 42-3 foo' | sed ##### add your solution here
[123]-[87]-[593] 42-3 foo

$ echo '53783-0913 hi 3 4-2' | sed ##### add your solution here
[53783]-[0913] hi 3 4-2

82

Processing lines bounded by distinct markers

Address range was already introduced in an earlier chapter. This chapter will cover a wide
variety of use cases where you need to process a group of lines defined by a starting and
a ending pattern. For some examples, other text processing commands will also be used to
construct a simpler one-liner compared to a complex sed only solution.

Uniform markers

This section will cover cases where the input file will always contain the same number of
starting and ending patterns and arranged in alternating fashion. For example, there cannot
be two starting patterns appearing without an ending pattern between them and vice versa.
Lines of text inside and between such groups are optional.

The sample file shown below will be used to illustrate examples in this section. For simplicity,
assume that the starting pattern is marked by start and the ending pattern by end . They
have also been given group numbers to make it easier to visualize the transformation between
input and output for the commands discussed in this section.

$ cat uniform.txt
mango
icecream
--start 1--
1234
6789
end 1
how are you
have a nice day
--start 2--
a
b
c
end 2
par,far,mar,tar

Case 1: Processing all the group of lines based on the distinct markers, including the lines
matched by markers themselves. For simplicity, the below command will just print all such
lines. This use case was already covered in Address range section as well.

$ sed -n '/start/,/end/p' uniform.txt
--start 1--
1234
6789
end 1
--start 2--
a
b
c
end 2

83

Case 2: Processing all the group of lines but excluding the lines matched by markers them-
selves.

$ # recall that empty REGEXP will reuse last matched REGEXP
$ sed -n '/start/,/end/{//! s/^/* /p}' uniform.txt
* 1234
* 6789
* a
* b
* c

Case 3: Processing all the group of lines but excluding the ending marker.

$ sed -n '/start/,/end/{/end/!p}' uniform.txt
--start 1--
1234
6789
--start 2--
a
b
c

Case 4: Processing all the group of lines but excluding the starting marker.

$ sed -n '/start/,/end/{/start/!p}' uniform.txt
1234
6789
end 1
a
b
c
end 2

Case 5: Processing all input lines except the group of lines bound by the markers.

$ sed '/start/,/end/d; s/$/./' uniform.txt
mango.
icecream.
how are you.
have a nice day.
par,far,mar,tar.

Case 6 Processing all input lines except the group of lines between the markers.

$ sed '/start/,/end/{//!d}' uniform.txt
mango
icecream
--start 1--
end 1
how are you
have a nice day
--start 2--
end 2
par,far,mar,tar

84

Case 7: Similar to case 6, but include the starting marker.

$ sed '/start/,/end/{/start/!d}' uniform.txt
mango
icecream
--start 1--
how are you
have a nice day
--start 2--
par,far,mar,tar

Case 8: Similar to case 6, but include the ending marker.

$ sed '/start/,/end/{/end/!d}' uniform.txt
mango
icecream
end 1
how are you
have a nice day
end 2
par,far,mar,tar

Extracting first or last group

The same sample input file from the previous section will be used for this section’s examples as
well. The task is to extract only the first or the very last group of lines defined by the markers.

To get the first block, simply apply q command when the ending mark is matched.

$ sed -n '/start/,/end/{p; /end/q}' uniform.txt
--start 1--
1234
6789
end 1

$ # use other tricks discussed in previous section as needed
$ sed -n '/start/,/end/{//!p; /end/q}' uniform.txt
1234
6789

To get the last block, reverse the input linewise, change the order of address range, get the
first block, and then reverse linewise again.

$ tac uniform.txt | sed -n '/end/,/start/{p; /start/q}' | tac
--start 2--
a
b
c
end 2

85

Broken groups

Sometimes, the starting and ending markers aren’t always present uniformly in pairs. For
example, consider a log file which can have multiple warning messages followed by an error
message as shown below.

$ cat log.txt
foo baz 123
--> warning 1
a,b,c,d
42
--> warning 2
x,y,z
--> warning 3
4,3,1
==> error 1
hi bye

Considering error lines as the ending marker, the starting marker might be one of two possi-
bilities. Either get all the warning messages or get only the last warning message that occurs
before the error.

$ sed -n '/warning/,/error/p' log.txt
--> warning 1
a,b,c,d
42
--> warning 2
x,y,z
--> warning 3
4,3,1
==> error 1

$ tac log.txt | sed -n '/error/,/warning/p' | tac
--> warning 3
4,3,1
==> error 1

If both the starting and ending markers can occur multiple times, then learn-
byexample gawk: broken blocks or learnbyexample perl: broken blocks would suit
better than trying to solve with sed

Summary

This chapter didn’t introduce any new feature, but rather dealt with a variety of use cases
that need the address range filter. Some of them required using other commands to make the
solution simpler. The next chapter will discuss various gotchas that you may encounter while
using sed and a few tricks to get better performance. After that, there’s another chapter
with resource links for further reading. Hope you found sed as an interesting and useful
tool to learn. Happy coding!

86

https://github.com/learnbyexample/Command-line-text-processing/blob/master/gnu_awk.md#broken-blocks
https://github.com/learnbyexample/Command-line-text-processing/blob/master/gnu_awk.md#broken-blocks
https://github.com/learnbyexample/Command-line-text-processing/blob/master/perl_the_swiss_knife.md#broken-blocks

Exercises

a) For the input file broken.txt , print all lines between the markers top and bottom .
The first sed command shown below doesn’t work because sed will match till end of file
if second address isn’t found.

$ cat broken.txt
top
3.14
bottom
top
1234567890
bottom
top
Hi there
Have a nice day
Good bye

$ # wrong output
$ sed -n '/top/,/bottom/ {//!p}' broken.txt
3.14
1234567890
Hi there
Have a nice day
Good bye

$ # expected output
$ ##### add your solution here
3.14
1234567890

87

Gotchas and Tricks

1) Use single quotes to enclose sed commands on the command line to avoid potential
conflict with shell metacharacters. This case applies when the command doesn’t need
variable or command substitution.

$ # space is a shell metacharacter, hence the error
$ echo 'a sunny day' | sed s/sunny day/cloudy day/
sed: -e expression #1, char 7: unterminated `s' command
$ # shell treats characters inside single quotes literally
$ echo 'a sunny day' | sed 's/sunny day/cloudy evening/'
a cloudy evening

2) On the other hand, beginners often do not realize the difference between single and
double quotes and expect shell substitutions to work from within single quotes. See
wooledge: Quotes and unix.stackexchange: Why does my shell script choke on whites-
pace or other special characters? for details about various quoting mechanisms.

$ # $USER won't get expanded within single quotes
$ echo 'User name: ' | sed 's/$/$USER/'
User name: $USER

$ # use double quotes for such cases
$ echo 'User name: ' | sed "s/$/$USER/"
User name: learnbyexample

3) When shell substitution is needed, surrounding entire command with double quotes may
lead to issues due to conflict between sed and bash special characters. So, use double
quotes only for the portion of the command where it is required.

$ # ! is one of special shell characters within double quotes
$ word='at'
$ printf 'sea\neat\ndrop\n' | sed "/${word}/!d"
printf 'sea\neat\ndrop\n' | sed "/${word}/date -Is"
sed: -e expression #1, char 6: extra characters after command

$ # works correctly when only the required portion is double quoted
$ printf 'sea\neat\ndrop\n' | sed '/'"${word}"'/!d'
eat

4) Another gotcha when applying variable or command substitution is the conflict between
sed metacharacters and the value of the substituted string. See also stackoverflow:
Is it possible to escape regex metacharacters reliably with sed and unix.stackexchange:
security consideration when using shell substitution.

$ # variable being substituted cannot have the delimiter character
$ printf 'home\n' | sed 's/$/: '"$HOME"'/'
sed: -e expression #1, char 8: unknown option to `s'

$ # use a different delimiter that won't conflict with variable value
$ printf 'home\n' | sed 's|$|: '"$HOME"'|'
home: /home/learnbyexample

88

https://mywiki.wooledge.org/Quotes
https://unix.stackexchange.com/questions/131766/why-does-my-shell-script-choke-on-whitespace-or-other-special-characters
https://unix.stackexchange.com/questions/131766/why-does-my-shell-script-choke-on-whitespace-or-other-special-characters
https://stackoverflow.com/questions/29613304/is-it-possible-to-escape-regex-metacharacters-reliably-with-sed
https://stackoverflow.com/questions/29613304/is-it-possible-to-escape-regex-metacharacters-reliably-with-sed
https://unix.stackexchange.com/questions/297122/replace-the-first-occurence-of-a-pattern-in-a-file-that-may-contain-a-slash/297128#297128
https://unix.stackexchange.com/questions/297122/replace-the-first-occurence-of-a-pattern-in-a-file-that-may-contain-a-slash/297128#297128

5) You can specify command line options after filename arguments. Useful if you forgot
some option(s) and want to edit the previous command from history.

$ printf 'boat\nsite\nfoot\n' > temp.txt
$ # no output, as + is not special with default BRE
$ sed -n '/[aeo]+t/p' temp.txt

$ # pressing up arrow will bring up the last command from history
$ # then you can add the option needed at the end of the command
$ sed -n '/[aeo]+t/p' temp.txt -E
boat
foot

As a corollary, if a filename starts with - , you need to either escape it or use -- as an
option to indicate that no more options will be used. The -- feature is not unique to sed
command, it is applicable to many other commands as well and typically used when filenames
are obtained from another source or expanded by shell globs such as *.txt .

$ echo 'hi hello' > -dash.txt
$ sed 's/hi/HI/' -dash.txt
sed: invalid option -- 'd'

$ sed -- 's/hi/HI/' -dash.txt
HI hello

$ # clean up temporary file
$ rm -- -dash.txt

6) Your command might not work and/or get weird output if your input file has dos style
line endings.

$ # substitution doesn't work here because of dos style line ending
$ printf 'hi there\r\ngood day\r\n' | sed -E 's/\w+$/123/'
hi there
good day
$ # matching \r optionally is one way to solve this issue
$ # that way, it'll work for both \r\n and \n line endings
$ printf 'hi there\r\ngood day\r\n' | sed -E 's/\w+(\r?)$/123\1/'
hi 123
good 123

$ # swapping every two columns, works well with \n line ending
$ printf 'good,bad,42,24\n' | sed -E 's/([^,]+),([^,]+)/\2,\1/g'
bad,good,24,42
$ # output gets mangled with \r\n line ending
$ printf 'good,bad,42,24\r\n' | sed -E 's/([^,]+),([^,]+)/\2,\1/g'
,42,good,24

I use these bash functions (as part of .bashrc configuration) to easily switch between dos
and unix style line endings. Some Linux distribution may come with these commands installed
by default. See also stackoverflow: Why does my tool output overwrite itself and how do I fix
it?

89

https://stackoverflow.com/questions/45772525/why-does-my-tool-output-overwrite-itself-and-how-do-i-fix-it
https://stackoverflow.com/questions/45772525/why-does-my-tool-output-overwrite-itself-and-how-do-i-fix-it

unix2dos() { sed -i 's/$/\r/' "$@" ; }
dos2unix() { sed -i 's/\r$//' "$@" ; }

7) Unlike grep , sed will not add a newline if last line of input didn’t have one.

$ # grep added a newline even though 'drop' doesn't end with newline
$ printf 'sea\neat\ndrop' | grep -v 'at'
sea
drop
$ # sed will not do so
$ # note how the prompt appears after 'drop'
$ printf 'sea\neat\ndrop' | sed '/at/d'
sea
drop$

8) Use of -e option for commands like a/c/i/r/R when command grouping is also
required.

$ # } gets treated as part of argument for append command, hence the error
$ seq 3 | sed '2{s/^/*/; a hi}'
sed: -e expression #1, char 0: unmatched `{'

$ # } now used with -e, but -e is still missing for first half of command
$ seq 3 | sed '2{s/^/*/; a hi' -e '}'
sed: -e expression #1, char 1: unexpected `}'

$ # -e now properly used for both portions of the command
$ seq 3 | sed -e '2{s/^/*/; a hi' -e '}'
1
*2
hi
3

9) Longest match wins. See also stackoverflow: Greedy vs Reluctant vs Possessive

$ s='food land bark sand band cue combat'
$ # this will always match from first 'foo' to last 'ba'
$ echo "$s" | sed 's/foo.*ba/X/'
Xt
$ # if you need to match from first 'foo' to first 'ba', then
$ # use a tool which supports non-greedy quantifiers
$ echo "$s" | perl -pe 's/foo.*?ba/X/'
Xrk sand band cue combat

For certain cases, character class can help in matching only the relevant characters. And in
some cases, adding more qualifiers instead of just .* can help. See stackoverflow: How to
replace everything until the first occurrence for an example.

$ echo '{52} apples and {31} mangoes' | sed 's/{.*}/42/g'
42 mangoes
$ echo '{52} apples and {31} mangoes' | sed 's/{[^}]*}/42/g'
42 apples and 42 mangoes

90

https://stackoverflow.com/questions/5319840/greedy-vs-reluctant-vs-possessive-quantifiers
https://stackoverflow.com/questions/45168607/how-to-replace-everything-between-but-only-until-the-first-occurrence-of-the-end
https://stackoverflow.com/questions/45168607/how-to-replace-everything-between-but-only-until-the-first-occurrence-of-the-end

10) Beware of empty matches when using the * quantifier.

$ # * matches zero or more times
$ echo '42,,,,,hello,bye,,,hi' | sed 's/,*/,/g'
,4,2,h,e,l,l,o,b,y,e,h,i,
$ # + matches one or more times
$ echo '42,,,,,hello,bye,,,hi' | sed -E 's/,+/,/g'
42,hello,bye,hi

11) BRE vs ERE syntax could get confusing for beginners. Quoting from the manual:

In GNU sed, the only difference between basic and extended regular expressions
is in the behavior of a few special characters: ? , + , parentheses, braces ({}
), and | .

$ # no match as + is not special with default BRE
$ echo '52 apples and 31234 mangoes' | sed 's/[0-9]+/[&]/g'
52 apples and 31234 mangoes
$ # so, either use \+ with BRE or use + with ERE
$ echo '52 apples and 31234 mangoes' | sed 's/[0-9]\+/[&]/g'
[52] apples and [31234] mangoes

$ # the reverse is also common, use of escapes when not required
$ echo 'get {} set' | sed 's/\{\}/[]/'
sed: -e expression #1, char 10: Invalid preceding regular expression
$ echo 'get {} set' | sed 's/{}/[]/'
get [] set

12) Online tools like regex101 and debuggex can be very useful for beginners to regular
expressions, especially for debugging purposes. However, their popularity has lead to
users trying out their pattern on these sites and expecting them to work as is for com-
mand line tools like grep , sed and awk . The issue arises when features like
non-greedy and lookarounds are used as they wouldn’t work with BRE/ERE. See also
unix.stackexchange: Why does my regular expression work in X but not in Y?

$ echo '1,,,two,,3' | sed -E 's/,\K(?=,)/NA/g'
sed: -e expression #1, char 15: Invalid preceding regular expression
$ echo '1,,,two,,3' | perl -pe 's/,\K(?=,)/NA/g'
1,NA,NA,two,NA,3

$ # \d is not available as character set escape sequence
$ # will match 'd' instead
$ echo '52 apples and 31234 mangoes' | sed -E 's/\d+/[&]/g'
52 apples an[d] 31234 mangoes
$ echo '52 apples and 31234 mangoes' | perl -pe 's/\d+/[$&]/g'
[52] apples and [31234] mangoes

13) If you are facing issues with end of line matching, it is often due to dos-style line ending
(discussed earlier in this chapter) or whitespace characters at the end of line.

$ # there's no visual clue to indicate whitespace characters at end of line
$ printf 'food bark \n1234 6789\t\n'
food bark

91

https://regex101.com/
https://www.debuggex.com
https://unix.stackexchange.com/questions/119905/why-does-my-regular-expression-work-in-x-but-not-in-y

1234 6789
$ # no match
$ printf 'food bark \n1234 6789\t\n' | sed -E 's/\w+$/xyz/'
food bark
1234 6789

$ # cat command has options to indicate end of line, tabs, etc
$ printf 'food bark \n1234 6789\t\n' | cat -A
food bark $
1234 6789^I$
$ # works now, as whitespace characters are matched too
$ printf 'food bark \n1234 6789\t\n' | sed -E 's/\w+\s*$/xyz/'
food xyz
1234 xyz

14) The word boundary \b matches both start and end of word locations. Whereas, \<
and \> match exactly the start and end of word locations respectively. This leads to
cases where you have to choose which of these word boundaries to use depending on
results desired. Consider I have 12, he has 2! as sample text, shown below as an
image with vertical bars marking the word boundaries. The last character ! doesn’t
have end of word boundary as it is not a word character.

$ # \b matches both start and end of word boundaries
$ # the first match here used starting boundary of 'I' and 'have'
$ echo 'I have 12, he has 2!' | sed 's/\b..\b/[&]/g'
[I]have [12][,][he] has[2]!

$ # \< and \> only match the start and end word boundaries respectively
$ echo 'I have 12, he has 2!' | sed 's/\<..\>/[&]/g'
I have [12], [he] has 2!

Here’s another example to show the difference between the two types of word boundaries.

$ # add something to both start/end of word
$ echo 'hi log_42 12b' | sed 's/\b/:/g'
:hi: :log_42: :12b:

$ # add something only at start of word
$ echo 'hi log_42 12b' | sed 's/\</:/g'
:hi :log_42 :12b

$ # add something only at end of word
$ echo 'hi log_42 12b' | sed 's/\>/:/g'
hi: log_42: 12b:

15) For some cases, you could simplify and improve readability of a substitution command
by adding a filter condition instead of using substitution only.

92

$ # insert 'Error: ' at start of line if the line contains '42'
$ # also, remove all other starting whitespaces for such lines
$ printf '1423\n214\n 425\n' | sed -E 's/^\s*(.*42)/Error: \1/'
Error: 1423
214
Error: 425

$ # simpler and readable
$ # also note that -E is no longer required
$ printf '1423\n214\n 425\n' | sed '/42/ s/^\s*/Error: /'
Error: 1423
214
Error: 425

16) Both 1 and $ will match as an address if input file has only one line of data.

$ printf '3.14\nhi\n42\n' | sed '1 s/^/start: /; $ s/$/ :end/'
start: 3.14
hi
42 :end
$ echo '3.14' | sed '1 s/^/start: /; $ s/$/ :end/'
start: 3.14 :end

$ # you could use control structures as a workaround
$ # this will not work for ending address if input has only one line
$ echo '3.14' | sed '1{s/^/start: /; b}; $ s/$/ :end/'
start: 3.14
$ # this will not work for starting address if input has only one line
$ echo '3.14' | sed '${s/$/ :end/; b}; 1 s/^/start: /'
3.14 :end

17) n and N commands will not execute further commands if there’s no more input lines
to fetch.

$ # last line matched the filtering condition
$ # but substitution didn't work for last line as there's no more input
$ printf 'red\nblue\ncredible\n' | sed '/red/{N; s/e.*e/2/}'
r2
credible

$ # $!N will avoid executing N command for last line of input
$ printf 'red\nblue\ncredible\n' | sed '/red/{$!N; s/e.*e/2/}'
r2
cr2

18) Changing locale to ASCII (assuming default is not ASCII locale) can give significant speed
boost.

$ # time shown is best result from multiple runs
$ # speed benefit will vary depending on computing resources, input, etc
$ time sed -nE '/^([a-d][r-z]){3}$/p' /usr/share/dict/words > f1
real 0m0.040s

93

$ # LC_ALL=C will give ASCII locale, active only for this command
$ time LC_ALL=C sed -nE '/^([a-d][r-z]){3}$/p' /usr/share/dict/words > f2
real 0m0.016s

$ # check that results are same for both versions of the command
$ diff -s f1 f2
Files f1 and f2 are identical

Here’s another example.

$ time sed -nE '/^([a-z]..)\1$/p' /usr/share/dict/words > f1
real 0m0.082s

$ time LC_ALL=C sed -nE '/^([a-z]..)\1$/p' /usr/share/dict/words > f2
real 0m0.048s

$ # clean up temporary files
$ rm f[12]

19) ripgrep (command name rg) is primarily used as an alternative to grep but
also supports search and replace functionality. It has more regular expression fea-
tures than BRE/ERE, supports unicode, multiline and fixed string matching and
generally faster than sed . sed 's/search/replace/g' file is similar to
rg --passthru -N 'search' -r 'replace' file . There are plenty of features to
recommended learning rg even though it supports substitution in limited fashion
compared to sed (no in-place support, no address filtering, no control structures, etc).
See my book on GNU GREP and RIPGREP for more details.

$ # same as: sed 's/e/E/g' greeting.txt
$ # --passthru is needed to print lines which didn't match the pattern
$ rg --passthru -N 'e' -r 'E' greeting.txt
Hi thErE
HavE a nicE day

$ # non-greedy quantifier
$ s='food land bark sand band cue combat'
$ echo "$s" | rg --passthru 'foo.*?ba' -r 'X'
Xrk sand band cue combat

$ # Multiline search and replacement
$ printf '42\nHi there\nHave a Nice Day' | rg --passthru -U '(?s)the.*ice' -r ''
42
Hi Day

$ # easily handle fixed strings, this one replaces [4]* with 2
$ printf '2.3/[4]*6\nfoo\n5.3-[4]*9\n' | rg --passthru -F '[4]*' -r '2'
2.3/26
foo
5.3-29

94

https://github.com/BurntSushi/ripgrep
https://github.com/learnbyexample/learn_gnugrep_ripgrep

$ # unicode support
$ echo 'fox:αλεπού,eagle:αετός' | rg '\p{L}+' -r '($0)'
(fox):(αλεπού),(eagle):(αετός)

$ # -P option enables PCRE2 if you need even more advanced features
$ echo 'car bat cod map' | rg -P '(bat|map)(*SKIP)(*F)|\w+' -r '[$0]'
[car] bat [cod] map

95

Further Reading

• man sed and info sed and online manual
• Information about various implementations of sed

∘ sed FAQ, great resource, but last modified 10 March 2003
∘ stackoverflow: BSD/macOS sed vs GNU sed vs the POSIX sed specification
∘ unix.stackexchange: Differences between sed on Mac OSX and other standard sed
∘ grymoire: sed tutorial — has details on differences between various sed versions
as well

• Q&A on stackoverflow/stackexchange are good source of learning material, good for
practice exercises as well

∘ sed Q&A on unix stackexchange
∘ sed Q&A on stackoverflow

• Learn Regular Expressions (has information on flavors other than BRE/ERE too)
∘ regular-expressions — tutorials and tools
∘ rexegg — tutorials, tricks and more
∘ stackoverflow: What does this regex mean?
∘ online regex tester and debugger — not fully suitable for cli tools, but most of ERE
syntax works

• My repo on cli text processing tools
• Related tools

∘ rpl — search and replace tool, has interesting options like interactive mode and
recursive mode

∘ sedsed — Debugger, indenter and HTMLizer for sed scripts
∘ xo — composes regular expression match groups
∘ sd — simple search and replace, implemented in Rust

• unix.stackexchange: When to use grep, sed, awk, perl, etc

Here’s some links for specific topics:

• ASCII reference and locale usage
∘ ASCII code table
∘ wiki.archlinux: locale
∘ shellhacks: Define Locale and Language Settings

• unix.stackexchange: replace multiline string
• stackoverflow: deleting empty lines with optional white spaces
• unix.stackexchange: print only line above the matching line
• stackoverflow: get lines between two patterns only if there is third pattern between them

∘ unix.stackexchange: similar example

96

https://www.gnu.org/software/sed/manual/sed.html
http://sed.sourceforge.net/sedfaq.html
https://stackoverflow.com/questions/24275070/sed-not-giving-me-correct-substitute-operation-for-newline-with-mac-difference/24276470#24276470
https://unix.stackexchange.com/questions/13711/differences-between-sed-on-mac-osx-and-other-standard-sed
https://www.grymoire.com/Unix/Sed.html
https://unix.stackexchange.com/questions/tagged/sed?sort=votes&pageSize=15
https://stackoverflow.com/questions/tagged/sed?sort=votes&pageSize=15
https://www.regular-expressions.info/
https://www.rexegg.com/
https://stackoverflow.com/questions/22937618/reference-what-does-this-regex-mean
https://regex101.com/
https://github.com/learnbyexample/Command-line-text-processing
https://unix.stackexchange.com/questions/112023/how-can-i-replace-a-string-in-a-files/251742#251742
https://github.com/aureliojargas/sedsed
https://github.com/ezekg/xo
https://github.com/chmln/sd
https://unix.stackexchange.com/questions/303044/when-to-use-grep-less-awk-sed
https://ascii.cl/
https://wiki.archlinux.org/index.php/locale
https://www.shellhacks.com/linux-define-locale-language-settings/
https://unix.stackexchange.com/questions/26284/how-can-i-use-sed-to-replace-a-multi-line-string
https://stackoverflow.com/questions/16414410/delete-empty-lines-using-sed
https://unix.stackexchange.com/questions/264489/find-each-line-matching-a-pattern-but-print-only-the-line-above-it
https://stackoverflow.com/questions/39960075/bash-how-to-get-lines-between-patterns-only-if-there-is-pattern2-between-them
https://unix.stackexchange.com/questions/228699/sed-print-lines-matched-by-a-pattern-range-if-one-line-matches-a-condition

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Introduction
	Installation
	Documentation and options overview
	Editing standard input
	Editing file input
	Cheatsheet and summary
	Exercises

	In-place file editing
	With backup
	Without backup
	Multiple files
	Prefix backup name
	Place backups in different directory
	Cheatsheet and summary
	Exercises

	Selective editing
	Conditional execution
	Delete command
	Print command
	Quit commands
	Multiple commands
	Line addressing
	Print only line number
	Address range
	Relative addressing
	n and N commands
	Cheatsheet and summary
	Exercises

	BRE/ERE Regular Expressions
	Line Anchors
	Word Anchors
	Alternation
	Grouping
	Matching the metacharacters
	Using different delimiters
	The dot meta character
	Quantifiers
	Longest match wins
	Character classes
	Escape sequences
	Backreferences
	Cheatsheet and summary
	Exercises

	Flags
	Case insensitive matching
	Changing case in replacement section
	Global replace
	Replace specific occurrences
	Print flag
	Write to a file
	Executing external commands
	Multiline mode
	Cheatsheet and summary
	Exercises

	Shell substitutions
	Variable substitution
	Escaping metacharacters
	Command substitution
	Cheatsheet and summary
	Exercises

	z, s and f command line options
	NUL separated lines
	Separate files
	File as source of sed commands
	Cheatsheet and summary
	Exercises

	append, change, insert
	Basic usage
	Escape sequences
	Multiple commands
	Shell substitution
	Cheatsheet and summary
	Exercises

	Adding content from file
	r for entire file
	Using e and cat command
	R for line by line
	Cheatsheet and summary
	Exercises

	Control structures
	Branch commands
	if-then-else
	loop
	Cheatsheet and summary
	Exercises

	Processing lines bounded by distinct markers
	Uniform markers
	Extracting first or last group
	Broken groups
	Summary
	Exercises

	Gotchas and Tricks
	Further Reading

